skip to main content


Search for: All records

Creators/Authors contains: "Fernandez, M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 1, 2025
  2. Abstract The microscopic origins of emergent behaviours in condensed matter systems are encoded in their excitations. In ordinary magnetic materials, single spin-flips give rise to collective dipolar magnetic excitations called magnons. Likewise, multiple spin-flips can give rise to multipolar magnetic excitations in magnetic materials with spin S ≥ 1. Unfortunately, since most experimental probes are governed by dipolar selection rules, collective multipolar excitations have generally remained elusive. For instance, only dipolar magnetic excitations have been observed in isotropic S = 1 Haldane spin systems. Here, we unveil a hidden quadrupolar constituent of the spin dynamics in antiferromagnetic S = 1 Haldane chain material Y 2 BaNiO 5 using Ni L 3 -edge resonant inelastic x-ray scattering. Our results demonstrate that pure quadrupolar magnetic excitations can be probed without direct interactions with dipolar excitations or anisotropic perturbations. Originating from on-site double spin-flip processes, the quadrupolar magnetic excitations in Y 2 BaNiO 5 show a remarkable dual nature of collective dispersion. While one component propagates as non-interacting entities, the other behaves as a bound quadrupolar magnetic wave. This result highlights the rich and largely unexplored physics of higher-order magnetic excitations. 
    more » « less
  3. ABSTRACT

    In this work, we extend our recently developed multifidelity emulation technique to the simulated Lyman-α forest flux power spectrum. Multifidelity emulation allows interpolation of simulation outputs between cosmological parameters using many cheap low-fidelity simulations and a few expensive high-fidelity simulations. Using a test suite of small-box (30 Mpc h−1) simulations, we show that multifidelity emulation is able to reproduce the Lyman-α forest flux power spectrum well, achieving an average accuracy when compared to a test suite of $0.8\, {\rm {per\ cent}}$. We further show that it has a substantially increased accuracy over single-fidelity emulators, constructed using either the high- or low-fidelity simulations only. In particular, it allows the extension of an existing simulation suite to smaller scales and higher redshifts.

     
    more » « less
  4. Data files for the manuscript "Quadrupolar magnetic excitations in an isotropic spin-1 antiferromagnet".

    Reference: A. Nag, A. Nocera, S. Agrestini, M. Garcia-Fernandez, A. C. Walters, Sang-Wook Cheong, S. Johnston, and Ke-Jin Zhou, "Quadrupolar magnetic excitations in an isotropic spin-1 antiferromagnet". arXiv:2111.03625 (2021).

    Preprint: arXiv:2111.03625 (2021), URL: https://arxiv.org/abs/2111.03625

     
    more » « less
  5. null (Ed.)
    ABSTRACT Using a set of high resolution simulations, we quantify the effect of species-specific initial transfer functions on probes of the intergalactic medium (IGM) via the Lyman-α forest. We focus on redshifts 2–6, after H i reionization. We explore the effect of these initial conditions on measures of the thermal state of the low density IGM: the curvature, Doppler width cutoff, and Doppler width distribution. We also examine the matter and flux power spectrum, and potential consequences for constraints on warm dark matter models. We find that the curvature statistic is at most affected at the $\approx 2{{\ \rm per\ cent}}$ level at z = 6. The Doppler width cutoff parameters are affected by $\approx 5{{\ \rm per\ cent}}$ for the intercept, and $\approx 8{{\ \rm per\ cent}}$ for the fit slope, though this is subdominant to sample variation. The Doppler width distribution shows a $\approx 30{{\ \rm per\ cent}}$ effect at z = 3, however the distribution is not fully converged with simulation box size and resolution. The flux power spectrum is at most affected by $\approx 5{{\ \rm per\ cent}}$ at high redshift and small scales. We discuss numerical convergence with simulation parameters. 
    more » « less
  6. In the present work, four, well-studied, model peptides ( e.g. , substance P, bradykinin, angiotensin I and AT-Hook 3) were used to correlate structural information provided by ion mobility and ECD/CID fragmentation in a TIMS-q-EMS-ToF MS/MS platform, incorporporating an electromagnetostatic cell (EMS). The structural heterogeneity of the model peptides was observed by (i) multi-component ion mobility profiles (high ion mobility resolving power, R ∼115–145), and (ii) fast online characteristic ECD fragmentation patterns per ion mobility band (∼0.2 min). Particularly, it was demonstrated that all investigated species were probably conformers, involving cis / trans -isomerizations at X-Pro peptide bond, following the same protonation schemes, in good agreement with previous ion mobility and single point mutation experiments. The comparison between ion mobility selected ECD spectra and traditional FT-ICR ECD MS/MS spectra showed comparable ECD fragmentation efficiencies but differences in the ratio of radical (˙)/prime (′) fragment species (H˙ transfer), which were associated with the differences in detection time after the electron capture event. The analysis of model peptides using online TIMS-q-EMSToF MS/MS provided complementary structural information on the intramolecular interactions that stabilize the different gas-phase conformations to those obtained by ion mobility or ECD alone. 
    more » « less
  7. Charge-density waves (CDWs) are a ubiquitous form of electron density modulation in cuprate superconductors. Unveiling the nature of quasistatic CDWs and their dynamical excitations is crucial for understanding their origin––similar to the study of antiferromagnetism in cuprates. However, dynamical CDW excitations remain largely unexplored due to the limited availability of suitable experimental probes. Here, using resonant inelastic X-ray scattering, we observe dynamical CDW excitations in Bi2Sr2LaCuO6+δ (Bi2201) superconductors through its interference with the lattice. The distinct anomalies of the bond-buckling and the bond-stretching phonons allow us to draw a clear picture of funnel-shaped dynamical CDW excitations in Bi2201. Our results of the interplay between CDWs and the phonon anomalies shed light on the nature of CDWs in cuprates. 
    more » « less
  8. Free, publicly-accessible full text available December 1, 2024