skip to main content


Search for: All records

Creators/Authors contains: "Ferrer, Astrid"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Wood decomposition in water is a key ecosystem process driven by diverse microbial taxa that likely differ in their affinities for freshwater, estuarine and marine habitats. How these decomposer communities assemble in situ or potentially colonize from other habitats remains poorly understood. At three watersheds on Coiba Island, Panama, we placed replicate sections of branch wood of a single tree species on land, and in freshwater, estuarine and marine habitats that constitute a downstream salinity gradient. We sequenced archaea, bacteria and fungi from wood samples collected after 3, 9 and 15 months to examine microbial community composition, and to examine habitat specificity and abundance patterns. We found that these microbial communities were broadly structured by similar factors, with a strong effect of salinity, but little effect of watershed identity on compositional variation. Moreover, common aquatic taxa were also present in wood incubated on land. Our results suggest that either taxa dispersed to both terrestrial and aquatic habitats, or microbes with broad habitat ranges were initially present in the wood as endophytes. Nonetheless, these habitat generalists varied greatly in abundance across habitats suggesting an important role for habitat filtering in maintaining distinct aquatic communities in freshwater, estuarine and marine habitats.

     
    more » « less
  2. Abstract

    Identifying the drivers of decomposition is critical for understanding carbon cycling dynamics in forest ecosystems. Woody biomass is an important pool of carbon, composed of bark and underlying wood which vary in structure, nutrient concentrations and exposure to the environment. We hypothesized that higher nutrient concentrations in bark would speed the decomposition of underlying wood, and that this effect would be greater in streams, where nutrients are less available to decomposers than on land.

    Replicate branches of three tree species, with and without bark, were placed in streams and on land in a lowland tropical forest in Panama. After 3 and 11 months of decomposition, we measured mass loss and nitrogen (N) concentrations and sequenced the fungal and bacterial communities of both wood and bark tissues.

    While bark decomposed faster than the underlying wood and had higher N concentrations, bark presence slowed wood mass loss. Nitrogen concentration could account for interspecific variation in wood mass loss, but not bark mass loss. In contrast, bark mass loss, but not wood mass loss, was faster in streams than on land, suggesting fragmentation is more important for bark mass loss in streams. Differences in fungal and bacterial community composition between bark and wood substrates were significant but small.

    Our results indicate that bark can slow wood decomposition instead of promoting it, and that at least for branch wood, the primary drivers of decomposition differ between bark and wood. Differences in the factors driving decomposition rate between bark and wood suggest that the contribution of bark to the decomposition of woody biomass may depend on habitat.

    A freePlain Language Summarycan be found within the Supporting Information of this article.

     
    more » « less
  3. A globally distributed field experiment shows that wood decay, particularly by termites, depends on temperature. 
    more » « less
  4. Abstract

    Previous theoretical work has highlighted the potential for natural enemies to mediate the coexistence of species with similar life histories via density‐dependent effects on survivorship. For plant pathogens to play this role, they must differ in their ability to infect or induce disease in different host plant species. In tropical forests characterized by high diversity, these effects must extend to phylogenetically closely related species pairs. Mortality at the seed and seedling stage strongly influences the abundance and distribution of tropical tree species, but the host preferences and spatial distributions of fungi are rarely determined.

    We examined how host species identity, relatedness and seed viability influence the composition of fungal communities associated with seeds of four co‐occurring pioneer trees (Cecropia insignis,C. longipes,C. peltataandJacaranda copaia). Seeds were buried in mesh bags in five common gardens in the understorey of a lowland tropical forest in Panama and retrieved at intervals from 1 to 30 months. A subset of the seeds in each bag was used to determine germination success. One half of each remaining seed was tested for viability; and the other half was used to culture and identify seed‐infecting fungi.

    Seeds were infected by fungi after burial. Although fungal communities differed in viable versus dead seeds, and across burial locations, community composition primarily varied as a function of plant species identity (30.7% of variation in community composition vs. 4.5% for viability and location together), even for congenericCecropiaspecies. Phylogenetic reconstruction showed that relatedness of fungi mostly reflected differences betweenJacaranda(Bignoniaceae) andCecropia(Urticaceae).

    Although the proportion of germinable seeds decreased gradually over time for all species, intraspecific variation in survival was high at the same location (e.g. ranging from 0% to 100% forC. peltata) suggesting variable exposure or susceptibility to seed pathogens.

    Synthesis. Our study provides evidence under field conditions that congeneric tree species with similar life history traits differ markedly in seed‐associated fungal communities when exposed to the same soil‐borne fungi. This is a critical first step supporting pathogen‐mediated coexistence of closely related tree species.

     
    more » « less