skip to main content


Search for: All records

Creators/Authors contains: "Finn, Molly K."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract NGC 602 is a young, low-metallicity star cluster in the “Wing” of the Small Magellanic Cloud. We reveal the recent evolutionary past of the cluster through analysis of high-resolution (∼0.4 pc) Atacama Large Millimeter/submillimeter Array observations of molecular gas in the associated H ii region N90. We identify 110 molecular clumps ( R < 0.8 pc) traced by CO emission, and study the relationship between the clumps and associated young stellar objects (YSOs) and pre-main-sequence (PMS) stars. The clumps have high virial parameters (typical α vir = 4–11) and may retain signatures of a collision in the last ≲8 Myr between H i components of the adjacent supergiant shell SMC-SGS 1. We obtain a CO-bright-to-H 2 gas conversion factor of X CO, B = (3.4 ± 0.2) × 10 20 cm −2 (K km s −1 ) −1 , and correct observed clump properties for CO-dark H 2 gas to derive a total molecular gas mass in N90 of 16,600 ± 2400 M ⊙ . We derive a recent (≲1 Myr) star formation rate of 130 ± 30 M ⊙ Myr −1 with an efficiency of 8% ± 3% assessed through comparing total YSO mass to total molecular gas mass. Very few significant radial trends exist between clump properties or PMS star ages and distance from NGC 602. We do not find evidence for a triggered star formation scenario among the youngest (≲2 Myr) stellar generations, and instead conclude that a sequential star formation process in which NGC 602 did not directly cause recent star formation in the region is likely. 
    more » « less
  2. Abstract

    We present a comparison of low-J13CO and CS observations of four different regions in the LMC—the quiescent Molecular Ridge, 30 Doradus, N159, and N113, all at a resolution of ∼3 pc. The regions 30 Dor, N159, and N113 are actively forming massive stars, while the Molecular Ridge is forming almost no massive stars, despite its large reservoir of molecular gas and proximity to N159 and 30 Dor. We segment the emission from each region into hierarchical structures using dendrograms and analyze the sizes, masses, and line widths of these structures. We find that the Ridge has significantly lower kinetic energy at a given size scale and also lower surface densities than the other regions, resulting in higher virial parameters. This suggests that the Ridge is not forming massive stars as actively as the other regions because it has less dense gas and not because collapse is suppressed by excess kinetic energy. We also find that these physical conditions and energy balance vary significantly within the Ridge and that this variation appears only weakly correlated with distance from sites of massive-star formation such as R136 in 30 Dor, which is ∼1 kpc away. These variations also show only a weak correlation with local star formation activity within the clouds.

     
    more » « less
  3. Abstract Using recently acquired Hubble Space Telescope NIR observations ( J , Pa β , and H bands) of the nearby galaxy NGC 1313, we investigate the timescales required by a young star cluster to emerge from its natal cloud. We search for extincted star clusters, potentially embedded in their natal cloud as either (1) compact sources in regions with high H α /Pa β extinctions or (2) compact H ii regions that appear as point-like sources in the Pa β emission map. The NUV–optical–NIR photometry of the candidate clusters is used to derive their ages, masses, and extinctions via a least- χ 2 spectral energy distribution broad- and narrowband fitting process. The 100 clusters in the final samples have masses in the range and moderate extinctions, E ( B − V ) ≲ 1.0 mag. Focusing on the young clusters (0–6 Myr), we derive a weak correlation between extinction and age of the clusters. Almost half of the clusters have low extinctions, E ( B − V ) < 0.25 mag, already at very young ages (≤3 Myr), suggesting that dust is quickly removed from clusters. A stronger correlation is found between the morphology of the nebular emission (compact, partial or absent, both in H α and Pa β ) and cluster age. Relative fractions of clusters associated with a specific nebular morphology are used to estimate the typical timescales for clearing the natal gas cloud, resulting in between 3 and 5 Myr, ∼1 Myr older than what was estimated from NUV–optical-based cluster studies. This difference hints at a bias for optical-only-based studies, which James Webb Space Telescope will address in the coming years. 
    more » « less