skip to main content


Search for: All records

Creators/Authors contains: "Finn, Rose A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    We present an analysis of the galaxy stellar mass function (SMF) of 14 known protoclusters between 2.0 < z < 2.5 in the COSMOS field, down to a mass limit of 109.5 M⊙. We use existing photometric redshifts with a statistical background subtraction, and consider star-forming and quiescent galaxies identified from (NUV − r) and (r − J) colours separately. Our fiducial sample includes galaxies within 1 Mpc of the cluster centres. The shape of the protocluster SMF of star-forming galaxies is indistinguishable from that of the general field at this redshift. Quiescent galaxies, however, show a flatter SMF than in the field, with an upturn at low mass, though this is only significant at ∼2σ. There is no strong evidence for a dominant population of quiescent galaxies at any mass, with a fraction <15 per cent at 1σ confidence for galaxies with log M*/M⊙ < 10.5. We compare our results with a sample of galaxy groups at 1 < z < 1.5, and demonstrate that a significant amount of environmental quenching must take place between these epochs, increasing the relative abundance of high-mass ($\rm M_{\ast } \gt 10^{10.5} {\rm M}_{\odot }$) quiescent galaxies by a factor ≳ 2. However, we find that at lower masses ($\rm M_{\ast } \lt 10^{10.5} {\rm M}_{\odot }$), no additional environmental quenching is required.

     
    more » « less
  2. ABSTRACT

    We investigate the role of dense environments in suppressing star formation by studying $\rm \log _{10}(M_\star /M_\odot) \gt 9.7$ star-forming galaxies in nine clusters from the Local Cluster Survey (0.0137 < z < 0.0433) and a large comparison field sample drawn from the Sloan Digital Sky Survey. We compare the star formation rate (SFR) with stellar mass relation as a function of environment and morphology. After carefully controlling for mass, we find that in all environments, the degree of SFR suppression increases with increasing bulge-to-total (B/T) ratio. In addition, the SFRs of cluster and infall galaxies at a fixed mass are more suppressed than their field counterparts at all values of B/T. These results suggest a quenching mechanism that is linked to bulge growth that operates in all environments and an additional mechanism that further reduces the SFRs of galaxies in dense environments. We limit the sample to B/T ≤ 0.3 galaxies to control for the trends with morphology and find that the excess population of cluster galaxies with suppressed SFRs persists. We model the time-scale associated with the decline of SFRs in dense environments and find that the observed SFRs of the cluster core galaxies are consistent with a range of models including a mechanism that acts slowly and continuously over a long (2–5 Gyr) time-scale, and a more rapid (<1 Gyr) quenching event that occurs after a delay period of 1–6 Gyr. Quenching may therefore start immediately after galaxies enter clusters.

     
    more » « less
  3. Abstract Virgo is the nearest galaxy cluster; it is thus ideal for studies of galaxy evolution in dense environments in the local universe. It is embedded in a complex filamentary network of galaxies and groups, which represents the skeleton of the large-scale Laniakea supercluster. Here we assemble a comprehensive catalog of galaxies extending up to ∼12 virial radii in projection from Virgo to revisit the cosmic-web structure around it. This work is the foundation of a series of papers that will investigate the multiwavelength properties of galaxies in the cosmic web around Virgo. We match spectroscopically confirmed sources from several databases and surveys including HyperLeda, NASA Sloan Atlas, NASA/IPAC Extragalactic Database, and ALFALFA. The sample consists of ∼7000 galaxies. By exploiting a tomographic approach, we identify 13 filaments, spanning several megaparsecs in length. Long >17 h –1 Mpc filaments, tend to be thin (<1 h –1 Mpc in radius) and with a low-density contrast (<5), while shorter filaments show a larger scatter in their structural properties. Overall, we find that filaments are a transitioning environment between the field and cluster in terms of local densities, galaxy morphologies, and fraction of barred galaxies. Denser filaments have a higher fraction of early-type galaxies, suggesting that the morphology–density relation is already in place in the filaments, before galaxies fall into the cluster itself. We release the full catalog of galaxies around Virgo and their associated properties. 
    more » « less
  4. null (Ed.)
  5. The Undergraduate ALFALFA Team (UAT) Groups project is a coordinated study of gas and star formation properties of galaxies in and around more than 50 nearby (z<0.03) groups and clusters of varied richness, morphological type mix, and X-ray luminosity. We aim to probe mechanisms of gas depletion and morphological transformation by considering the spatial distributions of star formation in galaxies inhabiting a wide range of group and cluster environments. Here we present recent results from our wide area Hα and broadband R imaging project carried out with the WIYN 0.9m+MOSAIC/HDI at KPNO. This work has been supported by NSF grant AST-1211005 and AST-1637339. 
    more » « less