skip to main content


Search for: All records

Creators/Authors contains: "Finnegan, Seth"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Understanding the long-term effects of ongoing global environmental change on marine ecosystems requires a cross-disciplinary approach. Deep-time and recent fossil records can contribute by identifying traits and environmental conditions associated with elevated extinction risk during analogous events in the geologic past and by providing baseline data that can be used to assess historical change and set management and restoration targets and benchmarks. Here, we review the ecological and environmental information available in the marine fossil record and discuss how these archives can be used to inform current extinction risk assessments as well as marine conservation strategies and decision-making at global to local scales. As we consider future research directions in deep-time and conservationpaleobiology, we emphasize the need for coproduced research that unites researchers, conservation practitioners, and policymakers with the communities for whom the impacts of climate and global change are most imminent.

     
    more » « less
    Free, publicly-accessible full text available January 17, 2025
  2. Abstract

    The Santa Barbara Basin is an extraordinary archive of environmental and ecological change, where varved sediments preserve microfossils that provide an annual to decadal record of the dynamics of surrounding ecosystems. Of the microfossils preserved in these sediments, benthic foraminifera are the most abundant seafloor-dwelling organisms. While they have been extensively utilized for geochemical and paleoceanographic work, studies of their morphology are lacking. Here we use a high-throughput imaging method (AutoMorph) designed to extract 2D data from photographic images of fossils to produce a large image and 2D shape dataset of recent benthic foraminifera from two core records sampled from the center of the Santa Barbara Basin that span an ~800-year-long interval during the Common Era (1249–2008 CE). Information on more than 36,000 objects is included, of which more than 22,000 are complete or partially-damaged benthic foraminifera. The dataset also includes other biogenic microfossils including ostracods, pteropods, diatoms, radiolarians, fish teeth, and shark dermal denticles. We describe our sample preparation, imaging, and identification techniques, and outline potential data uses.

     
    more » « less
  3. Climate and continental configuration combined to make Early Paleozoic animals susceptible to extinction. 
    more » « less
    Free, publicly-accessible full text available September 1, 2024
  4. Abstract As the most recent time in Earth history when global temperatures were warmer than at present, the peak of the last interglacial (Marine Isotope Substage [MIS] 5e; ~120,000 years ago) can serve as a pre-anthropogenic baseline for a warmer near-future world. Here we use a new compilation of 22 fossil localities in California that have been reliably dated to MIS 5e to establish baseline expectations for contemporary bivalve species movements by identifying and analyzing bivalve species with “extralimital” ranges, that is, species that occupied the California region during MIS 5e but are now restricted to adjacent regions. We find that 15% of species ( n = 142) found in MIS 5e localities have extralimital ranges and currently occupy warmer waters to the south of the California region. The majority of extralimital occurrences occur in paleo-embayments, suggesting that these sheltered habitats were more suitable habitats for warm-water species than exposed coasts during the MIS 5e. We further find that extralimital species now tend to occur in cooler, more seasonally productive coastal waters and to occupy more offshore islands when compared with the broader species pool immediately south of California. These findings suggest that high dispersal potential and preexisting tolerances to environmental conditions similar to California's comparatively cool and seasonally productive environments may have enabled extralimital bivalves to colonize the California region during MIS 5e. 
    more » « less
  5. The decline in background extinction rates of marine animals through geologic time is an established but unexplained feature of the Phanerozoic fossil record. There is also growing consensus that the ocean and atmosphere did not become oxygenated to near-modern levels until the mid-Paleozoic, coinciding with the onset of generally lower extinction rates. Physiological theory provides us with a possible causal link between these two observations—predicting that the synergistic impacts of oxygen and temperature on aerobic respiration would have made marine animals more vulnerable to ocean warming events during periods of limited surface oxygenation. Here, we evaluate the hypothesis that changes in surface oxygenation exerted a first-order control on extinction rates through the Phanerozoic using a combined Earth system and ecophysiological modeling approach. We find that although continental configuration, the efficiency of the biological carbon pump in the ocean, and initial climate state all impact the magnitude of modeled biodiversity loss across simulated warming events, atmospheric oxygen is the dominant predictor of extinction vulnerability, with metabolic habitat viability and global ecophysiotype extinction exhibiting inflection points around 40% of present atmospheric oxygen. Given this is the broad upper limit for estimates of early Paleozoic oxygen levels, our results are consistent with the relative frequency of high-magnitude extinction events (particularly those not included in the canonical big five mass extinctions) early in the Phanerozoic being a direct consequence of limited early Paleozoic oxygenation and temperature-dependent hypoxia responses.

     
    more » « less
  6. Migration is an integral feature of modern mysticete whale ecology, and the demands of migration may have played a key role in shaping mysticete evolutionary history. Constraining when migration became established and assessing how it has changed through time may yield valuable insight into the evolution of mysticete whales and the oceans in which they lived. However, there are currently few data which directly assess prehistoric mysticete migrations. Here we show that calcite δ18O profiles of two species of modern whale barnacles (coronulids) accurately reflect the known migration routes of their host whales. We then analyze well-preserved fossil coronulids from three different locations along the eastern Pacific coast, finding that δ18O profiles from these fossils exhibit trends and ranges similar to modern specimens. Our results demonstrate that migration is an ancient behavior within the humpback and gray whale lineages and that multiple Pleistocene populations were undertaking migrations of an extent similar to those of the present day.

     
    more » « less