skip to main content


Search for: All records

Creators/Authors contains: "Fitzpatrick, Meagan C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available August 1, 2024
  2. Importance Adverse outcomes of COVID-19 in the pediatric population include disease and hospitalization, leading to school absenteeism. Booster vaccination for eligible individuals across all ages may promote health and school attendance. Objective To assess whether accelerating COVID-19 bivalent booster vaccination uptake across the general population would be associated with reduced pediatric hospitalizations and school absenteeism. Design, Setting, and Participants In this decision analytical model, a simulation model of COVID-19 transmission was fitted to reported incidence data from October 1, 2020, to September 30, 2022, with outcomes simulated from October 1, 2022, to March 31, 2023. The transmission model included the entire age-stratified US population, and the outcome model included children younger than 18 years. Interventions Simulated scenarios of accelerated bivalent COVID-19 booster campaigns to achieve uptake that was either one-half of or similar to the age-specific uptake observed for 2020 to 2021 seasonal influenza vaccination in the eligible population across all age groups. Main Outcomes and Measures The main outcomes were estimated hospitalizations, intensive care unit admissions, and isolation days of symptomatic infection averted among children aged 0 to 17 years and estimated days of school absenteeism averted among children aged 5 to 17 years under the accelerated bivalent booster campaign simulated scenarios. Results Among children aged 5 to 17 years, a COVID-19 bivalent booster campaign achieving age-specific coverage similar to influenza vaccination could have averted an estimated 5 448 694 (95% credible interval [CrI], 4 936 933-5 957 507) days of school absenteeism due to COVID-19 illness. In addition, the booster campaign could have prevented an estimated 10 019 (95% CrI, 8756-11 278) hospitalizations among the pediatric population aged 0 to 17 years, of which 2645 (95% CrI, 2152-3147) were estimated to require intensive care. A less ambitious booster campaign with only 50% of the age-specific uptake of influenza vaccination among eligible individuals could have averted an estimated 2 875 926 (95% CrI, 2 524 351-3 332 783) days of school absenteeism among children aged 5 to 17 years and an estimated 5791 (95% CrI, 4391-6932) hospitalizations among children aged 0 to 17 years, of which 1397 (95% CrI, 846-1948) were estimated to require intensive care. Conclusions and Relevance In this decision analytical model, increased uptake of bivalent booster vaccination among eligible age groups was associated with decreased hospitalizations and school absenteeism in the pediatric population. These findings suggest that although COVID-19 prevention strategies often focus on older populations, the benefits of booster campaigns for children may be substantial. 
    more » « less
    Free, publicly-accessible full text available May 1, 2024
  3. Read, Andrew Fraser (Ed.)
    Two of the Coronavirus Disease 2019 (COVID-19) vaccines currently approved in the United States require 2 doses, administered 3 to 4 weeks apart. Constraints in vaccine supply and distribution capacity, together with a deadly wave of COVID-19 from November 2020 to January 2021 and the emergence of highly contagious Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) variants, sparked a policy debate on whether to vaccinate more individuals with the first dose of available vaccines and delay the second dose or to continue with the recommended 2-dose series as tested in clinical trials. We developed an agent-based model of COVID-19 transmission to compare the impact of these 2 vaccination strategies, while varying the temporal waning of vaccine efficacy following the first dose and the level of preexisting immunity in the population. Our results show that for Moderna vaccines, a delay of at least 9 weeks could maximize vaccination program effectiveness and avert at least an additional 17.3 (95% credible interval [CrI]: 7.8–29.7) infections, 0.69 (95% CrI: 0.52–0.97) hospitalizations, and 0.34 (95% CrI: 0.25–0.44) deaths per 10,000 population compared to the recommended 4-week interval between the 2 doses. Pfizer-BioNTech vaccines also averted an additional 0.60 (95% CrI: 0.37–0.89) hospitalizations and 0.32 (95% CrI: 0.23–0.45) deaths per 10,000 population in a 9-week delayed second dose (DSD) strategy compared to the 3-week recommended schedule between doses. However, there was no clear advantage of delaying the second dose with Pfizer-BioNTech vaccines in reducing infections, unless the efficacy of the first dose did not wane over time. Our findings underscore the importance of quantifying the characteristics and durability of vaccine-induced protection after the first dose in order to determine the optimal time interval between the 2 doses. 
    more » « less
  4. null (Ed.)
  5. null (Ed.)
  6. null (Ed.)
    Since the emergence of coronavirus disease 2019 (COVID-19), unprecedented movement restrictions and social distancing measures have been implemented worldwide. The socioeconomic repercussions have fueled calls to lift these measures. In the absence of population-wide restrictions, isolation of infected individuals is key to curtailing transmission. However, the effectiveness of symptom-based isolation in preventing a resurgence depends on the extent of presymptomatic and asymptomatic transmission. We evaluate the contribution of presymptomatic and asymptomatic transmission based on recent individual-level data regarding infectiousness prior to symptom onset and the asymptomatic proportion among all infections. We found that the majority of incidences may be attributable to silent transmission from a combination of the presymptomatic stage and asymptomatic infections. Consequently, even if all symptomatic cases are isolated, a vast outbreak may nonetheless unfold. We further quantified the effect of isolating silent infections in addition to symptomatic cases, finding that over one-third of silent infections must be isolated to suppress a future outbreak below 1% of the population. Our results indicate that symptom-based isolation must be supplemented by rapid contact tracing and testing that identifies asymptomatic and presymptomatic cases, in order to safely lift current restrictions and minimize the risk of resurgence. 
    more » « less
  7. null (Ed.)
    Abstract Background Global vaccine development efforts have been accelerated in response to the devastating coronavirus disease 2019 (COVID-19) pandemic. We evaluated the impact of a 2-dose COVID-19 vaccination campaign on reducing incidence, hospitalizations, and deaths in the United States. Methods We developed an agent-based model of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission and parameterized it with US demographics and age-specific COVID-19 outcomes. Healthcare workers and high-risk individuals were prioritized for vaccination, whereas children under 18 years of age were not vaccinated. We considered a vaccine efficacy of 95% against disease following 2 doses administered 21 days apart achieving 40% vaccine coverage of the overall population within 284 days. We varied vaccine efficacy against infection and specified 10% preexisting population immunity for the base-case scenario. The model was calibrated to an effective reproduction number of 1.2, accounting for current nonpharmaceutical interventions in the United States. Results Vaccination reduced the overall attack rate to 4.6% (95% credible interval [CrI]: 4.3%–5.0%) from 9.0% (95% CrI: 8.4%–9.4%) without vaccination, over 300 days. The highest relative reduction (54%–62%) was observed among individuals aged 65 and older. Vaccination markedly reduced adverse outcomes, with non-intensive care unit (ICU) hospitalizations, ICU hospitalizations, and deaths decreasing by 63.5% (95% CrI: 60.3%–66.7%), 65.6% (95% CrI: 62.2%–68.6%), and 69.3% (95% CrI: 65.5%–73.1%), respectively, across the same period. Conclusions Our results indicate that vaccination can have a substantial impact on mitigating COVID-19 outbreaks, even with limited protection against infection. However, continued compliance with nonpharmaceutical interventions is essential to achieve this impact. 
    more » « less
  8. null (Ed.)
  9. null (Ed.)
    In the wake of community coronavirus disease 2019 (COVID-19) transmission in the United States, there is a growing public health concern regarding the adequacy of resources to treat infected cases. Hospital beds, intensive care units (ICUs), and ventilators are vital for the treatment of patients with severe illness. To project the timing of the outbreak peak and the number of ICU beds required at peak, we simulated a COVID-19 outbreak parameterized with the US population demographics. In scenario analyses, we varied the delay from symptom onset to self-isolation, the proportion of symptomatic individuals practicing self-isolation, and the basic reproduction number R 0 . Without self-isolation, when R 0 = 2.5, treatment of critically ill individuals at the outbreak peak would require 3.8 times more ICU beds than exist in the United States. Self-isolation by 20% of cases 24 h after symptom onset would delay and flatten the outbreak trajectory, reducing the number of ICU beds needed at the peak by 48.4% (interquartile range 46.4–50.3%), although still exceeding existing capacity. When R 0 = 2, twice as many ICU beds would be required at the peak of outbreak in the absence of self-isolation. In this scenario, the proportional impact of self-isolation within 24 h on reducing the peak number of ICU beds is substantially higher at 73.5% (interquartile range 71.4–75.3%). Our estimates underscore the inadequacy of critical care capacity to handle the burgeoning outbreak. Policies that encourage self-isolation, such as paid sick leave, may delay the epidemic peak, giving a window of time that could facilitate emergency mobilization to expand hospital capacity. 
    more » « less