skip to main content


Search for: All records

Creators/Authors contains: "Flay, D."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We present details of a high-accuracy absolute scalar magnetometer based on pulsed proton NMR. The B-field magnitude is determined from the precession frequency of proton spins in a cylindrical sample of water after accounting for field perturbations from probe materials, sample shape, and other corrections. Features of the design, testing procedures, and corrections necessary for qualification as an absolute scalar magnetometer are described. The device was tested at B = 1.45 T but can be modified for a range exceeding 1–3 T. The magnetometer was used to calibrate other NMR magnetometers and measure absolute magnetic field magnitudes to an accuracy of 19 parts per billion as part of a measurement of the muon magnetic moment anomaly at Fermilab. 
    more » « less
  2. The ratio of the electric to magnetic form factors of the proton, μpGEp/GMp, has been measured for elastic electron-proton scattering with polarized beam and target up to four-momentum transfer squared Q2=5.66(GeV/c)2 using double spin asymmetry for target spin orientation aligned nearly perpendicular to the beam momentum direction. This measurement of μpGEp/GMp agrees with the Q2 dependence of previous recoil polarization data and reconfirms the discrepancy at high Q2 between the Rosenbluth and the polarization-transfer method with a different measurement technique and systematic uncertainties uncorrelated to those of the recoil-polarization measurements. The form factor ratio at Q2=2.06(GeV/c)2 has been measured as μpGEp/GMp=0.720±0.176stat±0.039sys, which is in agreement with an earlier measurement using the polarized target technique at similar kinematics. The form factor ratio at Q2=5.66(GeV/c)2 has been determined as μpGEp/GMp=0.244±0.353stat±0.013sys, which represents the highest Q2 measurement reached using double spin asymmetries with polarized target to date. 
    more » « less
  3. null (Ed.)
  4. null (Ed.)
  5. null (Ed.)
  6. null (Ed.)