skip to main content


Search for: All records

Creators/Authors contains: "Fochesatto, Gilberto J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The pre-ALPACA (Alaskan Layered Pollution And Chemical Analysis) 2019 winter campaign took place in Fairbanks, Alaska, in November–December 2019. One objective of the campaign was to study the life-cycle of surface-based temperature inversions and the associated surface energy budget changes. Several instruments, including a 4-component radiometer and sonic anemometer were deployed in the open, snow-covered University of Alaska Fairbanks (UAF) Campus Agricultural Field. A local flow from a connecting valley occurs at this site. This flow is characterized by locally elevated wind speeds (greater than 3 m s$$^{-1}$$-1) under clear-sky conditions and a north-westerly direction. It is notably different to the wind observed at the airport more than 3.5 km to the south-west. The surface energy budget at the UAF Field site exhibits two preferential modes. In the first mode, turbulent sensible heat and net longwave fluxes are close to 0 W m$$^{-2}$$-2, linked to the presence of clouds and generally low winds. In the second, the net longwave flux is around − 50 W m$$^{-2}$$-2and the turbulent sensible heat flux is around 15 W m$$^{-2}$$-2, linked to clear skies and elevated wind speeds. The development of surface-based temperature inversions at the field is hindered compared to the airport because the local flow sustains vertical mixing. In this second mode the residual of the surface energy budget is large, possibly due to horizontal temperature advection.

     
    more » « less
  2. Abstract

    Melt from debris‐covered glaciers represents a regionally important freshwater source, especially in high‐relief settings as found in central Asia, Alaska, and South America. Sub‐debris melt is traditionally predicted from surface energy balance models that determine heat conduction through the supraglacial debris layer. Convection is rarely addressed, despite the porous nature of debris. Here we provide the first constraints on convection in supraglacial debris, through the development of a novel method to calculate individual conductive and nonconductive heat flux components from debris temperature profile data. This method was applied to data from Kennicott Glacier, Alaska, spanning two weeks in the summer of 2011 and two months in the summer of 2020. Both heat flux components exhibit diurnal cycles, the amplitude of which is coupled to atmospheric conditions. Mean diurnal nonconductive heat flux peaks at up to 43% the value of conductive heat flux, indicating that failure to account for it may lead to an incorrect representation of melt rates and their drivers. We interpret this heat flux to be dominated by latent heat as debris moisture content changes on a diurnal cycle. A sharp afternoon drop‐off in nonconductive heat flux is observed at shallow depths as debris dries. We expect these processes to be relevant for other debris‐covered glaciers. Debris properties such as porosity and tortuosity may play a large role in modulating it. Based on the present analysis, we recommend further study of convection in supraglacial debris for glaciers across the globe with different debris properties.

     
    more » « less