skip to main content


Search for: All records

Creators/Authors contains: "Fokwa, Boniface P."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The quinary members in the solid solution Hf2Fe1−δRu5−xIrx+δB2(x=1–4, VE=63–66) have been investigated experimentally and computationally. They were synthesized via arc‐melting and analyzed by EDX and X‐ray diffraction. Density functional theory (DFT) calculations predicted a preference for magnetic ordering in all members, but with a strong competition between ferro‐ and antiferromagnetism arising from interchain Fe−Fe interactions. The spin exchange and magnetic anisotropy energies predicted the lowest magnetic hardness forx=1 and 3 and the highest forx=2. Magnetization measurements confirm the DFT predictions and demonstrate that the antiferromagnetic ordering (TN=55–70 K) found at low magnetic fields changed to ferromagnetic (TC=150–750 K) at higher fields, suggesting metamagnetic behavior for all samples. As predicted, Hf2FeRu3Ir2B2has the highest intrinsic coercivity (Hc=74 kA/m) reported to date for Ti3Co5B2‐type phases. Furthermore, all coercivities outperform that of ferromagnetic Hf2FeIr5B2, indicating the importance of AFM interactions in enhancing magnetic anisotropy in these materials. Importantly, two members (x=1 and 4) maintain intrinsic coercivities in the semi‐hard range at room temperature. This study opens an avenue for controlling magnetic hardness by modulating antagonistic AFM and FM interactions in low‐dimensional rare‐earth‐free magnetic materials.

     
    more » « less
  2. Abstract A new ternary phase, TiIrB, was synthesized by arc-melting of the elements and characterized by powder X-ray diffraction. The compound crystallizes in the orthorhombic Ti 1+ x Rh 2− x + y Ir 3− y B 3 structure type, space group Pbam (no. 55) with the lattice parameters a  = 8.655(2), b  = 15.020(2), and c  = 3.2271(4) Å. Density Functional Theory (DFT) calculations were carried out to understand the electronic structure, including a Bader charge analysis. The charge distribution of TiIrB in the Ti 1+ x Rh 2− x + y Ir 3− y B 3 -type phase has been evaluated for the first time, and the results indicate that more electron density is transferred to the boron atoms in the zigzag B 4 units than to isolated boron atoms. 
    more » « less
  3. Abstract

    Raman scattering is performed on Fe3GeTe2(FGT) at temperatures from 8 to 300 K and under pressures from the ambient pressure to 9.43 GPa. Temperature‐dependent and pressure‐dependent Raman spectra are reported. The results reveal respective anomalous softening and moderate stiffening of the two Raman active modes as a result of the increase of pressure. The anomalous softening suggests anharmonic phonon dynamics and strong spin–phonon coupling. Pressure‐dependent density functional theory and phonon calculations are conducted and used to study the magnetic properties of FGT and assign the observed Raman modes,and. The calculations proved the strong spin–phonon coupling for themode. In addition, a synergistic interplay of pressure‐induced reduction of spin exchange interactions and spin–orbit coupling effect accounts for the softening of themode as pressure increases.

     
    more » « less