skip to main content


Search for: All records

Creators/Authors contains: "Ford, Eric B."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Theories of planet formation predict that low-mass stars should rarely host exoplanets with masses exceeding that of Neptune. We used radial velocity observations to detect a Neptune-mass exoplanet orbiting LHS 3154, a star that is nine times less massive than the Sun. The exoplanet’s orbital period is 3.7 days, and its minimum mass is 13.2 Earth masses. We used simulations to show that the high planet-to-star mass ratio (>3.5 × 10−4) is not an expected outcome of either the core accretion or gravitational instability theories of planet formation. In the core-accretion simulations, we show that close-in Neptune-mass planets are only formed if the dust mass of the protoplanetary disk is an order of magnitude greater than typically observed around very low-mass stars.

     
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  2. Abstract

    It is often assumed that the “Kepler dichotomy”—the apparent excess of planetary systems with a single detected transiting planet in the Kepler catalog—reflects an intrinsic bimodality in the mutual inclinations of planetary orbits. After conducting 600 simulations of planet formation followed by simulated Kepler observations, we instead propose that the apparent dichotomy reflects a divergence in the amount of migration and the separation of planetary semimajor axes into distinct “clusters.” We find that our simulated high-mass systems migrate rapidly, bringing more planets into orbital periods of less than 200 days. The outer planets are often caught in a migration trap—a range of planet masses and locations in which a dominant corotation torque prevents inward migration—which splits the system into two clusters. If clusters are sufficiently separated, the inner cluster remains dynamically cold, leading to low mutual inclinations and a higher probability of detecting multiple transiting planets. Conversely, our simulated low-mass systems typically bring fewer planets within 200 days, forming a single cluster that quickly becomes dynamically unstable, leading to collisions and high mutual inclinations. We propose an alternative explanation for the apparent Kepler dichotomy in which migration traps during formation lead to fewer planets within the Kepler detection window, and where mutual inclinations play only a secondary role. If our scenario is correct, then Kepler’s Systems with Tightly packed Inner Planets are a sample of planets that escaped capture by corotation traps, and their sizes may be a valuable probe into the structure of protoplanetary disks.

     
    more » « less
  3. Abstract

    Characterizing the masses and orbits of near-Earth-mass planets is crucial for interpreting observations from future direct imaging missions (e.g., HabEx, LUVOIR). Therefore, the Exoplanet Science Strategy report recommended further research so future extremely precise radial velocity surveys could contribute to the discovery and/or characterization of near-Earth-mass planets in the habitable zones of nearby stars prior to the launch of these future imaging missions. Newman et al. (2023) simulated such 10 yr surveys under various telescope architectures, demonstrating they can precisely measure the masses of potentially habitable Earth-mass planets in the absence of stellar variability. Here, we investigate the effect of stellar variability on the signal-to-noise ratio (S/N) of the planet mass measurements in these simulations. We find that correlated noise due to active regions has the largest effect on the observed mass S/N, reducing the S/N by a factor of ∼5.5 relative to the no-variability scenario; granulation reduces by a factor of ∼3, while p-mode oscillations has little impact on the proposed survey strategies. We show that in the presence of correlated noise, 5 cm s−1instrumental precision offers little improvement over 10 cm s−1precision, highlighting the need to mitigate astrophysical variability. With our noise models, extending the survey to 15 yr doubles the number of Earth-analogs with mass S/N > 10, and reaching this threshold for any Earth-analog orbiting a star >0.76Min a 10 yr survey would require an increase in the number of observations per star from that in Newman et al. (2023).

     
    more » « less
  4. Abstract

    We present an analysis of Sun-as-a-star observations from four different high-resolution, stabilized spectrographs—HARPS, HARPS-N, EXPRES, and NEID. With simultaneous observations of the Sun from four different instruments, we are able to gain insight into the radial velocity precision and accuracy delivered by each of these instruments and isolate instrumental systematics that differ from true astrophysical signals. With solar observations, we can completely characterize the expected Doppler shift contributed by orbiting Solar System bodies and remove them. This results in a data set with measured velocity variations that purely trace flows on the solar surface. Direct comparisons of the radial velocities measured by each instrument show remarkable agreement with residual intraday scatter of only 15–30 cm s−1. This shows that current ultra-stabilized instruments have broken through to a new level of measurement precision that reveals stellar variability with high fidelity and detail. We end by discussing how radial velocities from different instruments can be combined to provide powerful leverage for testing techniques to mitigate stellar signals.

     
    more » « less
  5. null (Ed.)
  6. Abstract We validate the planetary nature of an ultra-short-period planet orbiting the M dwarf KOI-4777. We use a combination of space-based photometry from Kepler, high-precision, near-infrared Doppler spectroscopy from the Habitable-zone Planet Finder, and adaptive optics imaging to characterize this system. KOI-4777.01 is a Mars-sized exoplanet ( R p = 0.51 ± 0.03 R ⊕ ) orbiting the host star every 0.412 days (∼9.9 hr). This is the smallest validated ultra-short period planet known and we see no evidence for additional massive companions using our HPF RVs. We constrain the upper 3 σ mass to M p < 0.34 M ⊕ by assuming the planet is less dense than iron. Obtaining a mass measurement for KOI-4777.01 is beyond current instrumental capabilities. 
    more » « less
  7. null (Ed.)
  8. null (Ed.)
  9. Abstract

    We detail the follow-up and characterization of a transiting exo-Venus identified by TESS, GJ 3929b (TOI-2013b), and its nontransiting companion planet, GJ 3929c (TOI-2013c). GJ 3929b is an Earth-sized exoplanet in its star’s Venus zone (Pb= 2.616272 ± 0.000005 days; Sb=17.30.7+0.8S) orbiting a nearby M dwarf. GJ 3929c is most likely a nontransiting sub-Neptune. Using the new, ultraprecise NEID spectrometer on the WIYN 3.5 m Telescope at Kitt Peak National Observatory, we are able to modify the mass constraints of planet b reported in previous works and consequently improve the significance of the mass measurement to almost 4σconfidence (Mb= 1.75 ± 0.45M). We further adjust the orbital period of planet c from its alias at 14.30 ± 0.03 days to the likely true period of 15.04 ± 0.03 days, and we adjust its minimum mass tomsini= 5.71 ± 0.92M. Using the diffuser-assisted ARCTIC imager on the ARC 3.5 m telescope at Apache Point Observatory, in addition to publicly available TESS and LCOGT photometry, we are able to constrain the radius of planet b toRp= 1.09 ± 0.04R. GJ 3929b is a top candidate for transmission spectroscopy in its size regime (TSM = 14 ± 4), and future atmospheric studies of GJ 3929b stand to shed light on the nature of small planets orbiting M dwarfs.

     
    more » « less
  10. Abstract

    The warm Neptune GJ 3470b transits a nearby (d= 29 pc) bright slowly rotating M1.5-dwarf star. Using spectroscopic observations during two transits with the newly commissioned NEID spectrometer on the WIYN 3.5 m Telescope at Kitt Peak Observatory, we model the classical Rossiter–McLaughlin effect, yielding a sky-projected obliquity ofλ=9812+15and avsini=0.850.33+0.27kms1. Leveraging information about the rotation period and size of the host star, our analysis yields a true obliquity ofψ=958+9, revealing that GJ 3470b is on a polar orbit. Using radial velocities from HIRES, HARPS, and the Habitable-zone Planet Finder, we show that the data are compatible with a long-term radial velocity (RV) slope ofγ̇=0.0022±0.0011ms1day1over a baseline of 12.9 yr. If the RV slope is due to acceleration from another companion in the system, we show that such a companion is capable of explaining the polar and mildly eccentric orbit of GJ 3470b using two different secular excitation models. The existence of an outer companion can be further constrained with additional RV observations, Gaia astrometry, and future high-contrast imaging observations. Lastly, we show that tidal heating from GJ 3470b’s mild eccentricity has most likely inflated the radius of GJ 3470b by a factor of ∼1.5–1.7, which could help account for its evaporating atmosphere.

     
    more » « less