skip to main content


Search for: All records

Creators/Authors contains: "Fortney, Jonathan J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Brown dwarf spectra offer vital testbeds for our understanding of the chemical and physical processes that sculpt substellar atmospheres. Recently, atmospheric retrieval approaches have been successfully applied to low-resolution (R∼ 100) spectra of L, T, and Y dwarfs, yielding constraints on the chemical abundances and temperature structures of these atmospheres. Medium-resolution (R∼ 103) spectra of brown dwarfs offer additional insight, as molecular features are more easily disentangled and the thermal structure of the upper atmosphere is better probed. We present results from a GPU-based retrieval analysis of a high signal-to-noise, medium-resolution (R∼ 6000) FIRE spectrum from 0.85 to 2.5μm of the T9 dwarf UGPS J072227.51–054031.2. At 60× higher spectral resolution than previous brown dwarf retrievals, a number of novel challenges arise. We examine the effect of different opacity sources, in particular for CH4. Furthermore, we find that flaws in the data like errors from order stitching can bias our constraints. We compare these retrieval results to those for anR∼ 100 spectrum of the same object, revealing how constraints on atmospheric abundances and temperatures improve by an order of magnitude or more with increased spectral resolution. In particular, we can constrain the abundance of H2S, which is undetectable at lower spectral resolution. While these medium-resolution retrievals offer the potential of precise, stellar-like constraints on atmospheric abundances (∼0.02 dex), our retrieved radius is unphysically small (R=0.500.01+0.01RJup), indicating shortcomings with our modeling framework. This work is an initial investigation into brown dwarf retrievals at medium spectral resolution, offering guidance for future ground-based studies and JWST observations.

     
    more » « less
  2. Abstract

    AF Lep A+b is a remarkable planetary system hosting a gas-giant planet that has the lowest dynamical mass among directly imaged exoplanets. We present an in-depth analysis of the atmospheric composition of the star and planet to probe the planet’s formation pathway. Based on new high-resolution spectroscopy of AF Lep A, we measure a uniform set of stellar parameters and elemental abundances (e.g., [Fe/H] = −0.27 ± 0.31 dex). The planet’s dynamical mass (2.80.5+0.6MJup) and orbit are also refined using published radial velocities, relative astrometry, and absolute astrometry. We usepetitRADTRANSto perform chemically consistent atmospheric retrievals for AF Lep b. The radiative–convective equilibrium temperature profiles are incorporated as parameterized priors on the planet’s thermal structure, leading to a robust characterization for cloudy self-luminous atmospheres. This novel approach is enabled by constraining the temperature–pressure profiles via the temperature gradient(dlnT/dlnP), a departure from previous studies that solely modeled the temperature. Through multiple retrievals performed on different portions of the 0.9–4.2μm spectrophotometry, along with different priors on the planet’s mass and radius, we infer that AF Lep b likely possesses a metal-enriched atmosphere ([Fe/H] > 1.0 dex). AF Lep b’s potential metal enrichment may be due to planetesimal accretion, giant impacts, and/or core erosion. The first process coincides with the debris disk in the system, which could be dynamically excited by AF Lep b and lead to planetesimal bombardment. Our analysis also determinesTeff≈ 800 K,log(g)3.7dex, and the presence of silicate clouds and disequilibrium chemistry in the atmosphere. Straddling the L/T transition, AF Lep b is thus far the coldest exoplanet with suggested evidence of silicate clouds.

     
    more » « less
    Free, publicly-accessible full text available October 17, 2024
  3. Abstract About 70%–80% of stars in our solar and Galactic neighborhood are M dwarfs. They span a range of low masses and temperatures relative to solar-type stars, facilitating molecule formation throughout their atmospheres. Standard stellar atmosphere models primarily designed for FGK stars face challenges when characterizing broadband molecular features in spectra of cool stars. Here, we introduce SPHINX —a new 1D self-consistent radiative–convective thermochemical equilibrium chemistry model grid of atmospheres and spectra for M dwarfs in low resolution ( R ∼ 250). We incorporate the latest precomputed absorption cross sections with pressure broadening for key molecules dominant in late-K, early/main-sequence-M stars. We then validate our grid models by determining fundamental properties ( T eff , log g , [M/H], radius, and C/O) for 10 benchmark M+G binary stars with known host metallicities and 10 M dwarfs with interferometrically measured angular diameters. Incorporating the Gaussian process inference tool Starfish , we account for correlated and systematic noise in low-resolution (spectral stitching of SpeX, SNIFS, and STIS) observations and derive robust estimates of fundamental M-dwarf atmospheric parameters. Additionally, we assess the influence of photospheric heterogeneity on inferred [M/H] and find that it could explain some deviations from observations. We also probe whether the adopted convective mixing length parameter influences inferred radii, effective temperature, and [M/H] and again find that may explain discrepancies between interferometric observations and model-derived parameters for cooler M dwarfs. Mainly, we show the unique strength in leveraging broadband molecular absorption features occurring in low-resolution M dwarf spectra and demonstrate the ability to improve constraints on fundamental properties of exoplanet hosts and brown-dwarf companions. 
    more » « less
  4. Abstract Young exoplanets are attractive targets for atmospheric characterization to explore the early phase of planetary evolution and the surrounding environment. Recent observations of the 10 Myr young Neptune-sized exoplanet K2-33b revealed that the planet’s transit depth drastically decreases from the optical to near-infrared wavelengths. Thao et al. suggested that a thick planetary haze and/or stellar spots may be the cause; however, even the best-fit model only barely explains the data. Here, we propose that the peculiar transmission spectrum may indicate that K2-33b possesses a circumplanetary dust ring; an analog of Jupiter’s dust ring. We demonstrate that the ring could produce a steep slope in the transmission spectrum even if its optical depth is as low as ∼10 −2 . We then apply a novel joint atmosphere-ring retrieval to K2-33b and find that the ring scenario could well explain the observed spectrum for various possible ring compositions. Importantly, the dust ring also exhibits prominent ring particle absorption features of ring particles around ∼10 μ m, whose shape and strength depend on the composition of the ring. Thus, future observations by JWST-MIRI would be able to test not only the ring hypothesis but also, if it indeed exists, to constrain the composition of the ring—providing a unique opportunity to explore the origins of the dust ring around its parent planet, soon after the planetary system’s formation. 
    more » « less
  5. Abstract

    We study the constraining power of a high-precision measurement of the gravity field for Uranus and Neptune, as could be delivered by a low-periapse orbiter. Our study is practical, assessing the possible deliverables and limitations of such a mission with respect to the structure of the planets. Our study is also academic, assessing in a general way the relative importance of the low-order gravity, high-order gravity, rotation rate, and moment of inertia (MOI) in constraining planetary structure. We attempt to explore all possible interior density structures of a planet that are consistent with hypothetical gravity data via MCMC sampling of parameterized density profiles. When the gravity field is poorly known, as it is today, uncertainties in the rotation rate on the order of 10 minutes are unimportant, as they are interchangeable with uncertainties in the gravity coefficients. By the same token, when the gravity field is precisely determined, the rotation rate must be known to comparable precision. When gravity and rotation are well known, the MOI becomes well constrained, limiting the usefulness of independent MOI determinations unless they are extraordinarily precise. For Uranus and Neptune, density profiles can be well constrained. However, the nonuniqueness of the relative roles of H/He, watery volatiles, and rock in the deep interior will still persist with high-precision gravity data. Nevertheless, the locations and magnitudes (in pressure space) of any large-scale composition gradient regions can likely be identified, offering a crucially better picture of the interiors of Uranus or Neptune.

     
    more » « less
  6. ABSTRACT

    Transmission spectra of exoplanets orbiting active stars suffer from wavelength-dependent effects due to stellar photospheric heterogeneity. WASP-19b, an ultra-hot Jupiter (Teq ∼ 2100 K), is one such strongly irradiated gas-giant orbiting an active solar-type star. We present optical (520–900 nm) transmission spectra of WASP-19b obtained across eight epochs, using the Gemini Multi-Object Spectrograph (GMOS) on the Gemini-South telescope. We apply our recently developed Gaussian Processes regression based method to model the transit light-curve systematics and extract the transmission spectrum at each epoch. We find that WASP-19b’s transmission spectrum is affected by stellar variability at individual epochs. We report an observed anticorrelation between the relative slopes and offsets of the spectra across all epochs. This anticorrelation is consistent with the predictions from the forward transmission models, which account for the effect of unocculted stellar spots and faculae measured previously for WASP-19. We introduce a new method to correct for this stellar variability effect at each epoch by using the observed correlation between the transmission spectral slopes and offsets. We compare our stellar variability corrected GMOS transmission spectrum with previous contradicting MOS measurements for WASP-19b and attempt to reconcile them. We also measure the amplitude and timescale of broad-band stellar variability of WASP-19 from TESS photometry, which we find to be consistent with the effect observed in GMOS spectroscopy and ground-based broad-band photometric long-term monitoring. Our results ultimately caution against combining multiepoch optical transmission spectra of exoplanets orbiting active stars before correcting each epoch for stellar variability.

     
    more » « less
  7. Abstract The detection of disk-integrated polarization from Luhman 16 A and B in the H band, and subsequent modeling, has been interpreted in the framework of zonal cloud bands on these bodies. Recently, Tan and Showman investigated the 3D atmospheric circulation and cloud structures of brown dwarfs with general circulation models (GCMs), and their simulations yielded complex cloud distributions showing some aspects of zonal jets, but also complex vortices that cannot be captured by a simple model. Here we use these 3D GCMs specific to Luhman 16 A and B, along with the 3D Monte Carlo radiative transfer code ARTES, to calculate their polarization signals. We adopt the 3D temperature–pressure and cloud profiles from the GCMs as our input atmospheric structures. Our polarization calculations at 1.6 μ m agree well with the measured degree of linear polarization from both Luhman 16 A and B. Our calculations reproduce the measured polarization for both objects with cloud particle sizes between 0.5 and 1 μ m for Luhman 16 A and of 5 μ m for Luhman 16 B. We find that the degree of linear polarization can vary on hour-long timescales over the course of a rotation period. We also show that models with azimuthally symmetric band-like cloud geometries, typically used for interpreting polarimetry observations of brown dwarfs, overpredict the polarization signal if the cloud patterns do not include complex vortices within these bands. This exploratory work shows that GCMs are promising for modeling and interpreting polarization signals of brown dwarfs. 
    more » « less
  8. Abstract Exoplanet and brown dwarf atmospheres commonly show signs of disequilibrium chemistry. In the James Webb Space Telescope (JWST) era, high-resolution spectra of directly imaged exoplanets will allow the characterization of their atmospheres in more detail, and allow systematic tests for the presence of chemical species that deviate from thermochemical equilibrium in these atmospheres. Constraining the presence of disequilibrium chemistry in these atmospheres as a function of parameters such as their effective temperature and surface gravity will allow us to place better constraints on the physics governing these atmospheres. This paper is part of a series of works presenting the Sonora grid of atmosphere models. In this paper, we present a grid of cloud-free, solar metallicity atmospheres for brown dwarfs and wide-separation giant planets with key molecular species such as CH 4 , H 2 O, CO, and NH 3 in disequilibrium. Our grid covers atmospheres with T eff ∈ [500 K, 1300 K], log g ∈ [3.0, 5.5] (cgs) and an eddy diffusion parameter of log K zz = 2 , 4 and 7 (cgs). We study the effect of different parameters within the grid on the temperature and composition profiles of our atmospheres. We discuss their effect on the near-infrared colors of our model atmospheres and the detectability of CH 4 , H 2 O, CO, and NH 3 using the JWST. We compare our models against existing MKO and Spitzer observations of brown dwarfs and verify the importance of disequilibrium chemistry for T dwarf atmospheres. Finally, we discuss how our models can help constrain the vertical structure and chemical composition of these atmospheres. 
    more » « less
  9. ABSTRACT

    We present Gemini South/IGRINS observations of the 1060 K T6 dwarf 2MASS J08173001−6155158 with unprecedented resolution ($R\equiv \lambda /\Delta \lambda =45\, 000$) and signal-to-noise ratio (S/N > 200) for a late-type T dwarf. We use this benchmark observation to test the reliability of molecular line lists used up-to-date atmospheric models. We determine which spectroscopic regions should be used to estimate the parameters of cold brown dwarfs and, by extension, exoplanets. We present a detailed spectroscopic atlas with molecular identifications across the H and K bands of the near-infrared. We find that water (H2O) line lists are overall reliable. We find the most discrepancies amongst older methane (CH4) line lists, and that the most up-to-date CH4 line lists correct many of these issues. We identify individual ammonia (NH3) lines, a hydrogen sulfide (H2S) feature at 1.5900 $\mu$m, and a molecular hydrogen (H2) feature at 2.1218 $\mu$m. These are the first unambiguous detections of H2S and H2 absorption features in an extra-solar atmosphere. With the H2 detection, we place an upper limit on the atmospheric dust concentration of this T6 dwarf: at least 500 times less than the interstellar value, implying that the atmosphere is effectively dust-free. We additionally identify several features that do not appear in the model spectra. Our assessment of the line lists is valuable for atmospheric model applications to high-dispersion, low-S/N, high-background spectra, such as an exoplanet around a star. We demonstrate a significant enhancement in the detection of the CH4 absorption signal in this T6 dwarf with the most up-to-date line lists.

     
    more » « less