skip to main content


Search for: All records

Creators/Authors contains: "Frank, A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    We report on the results of a simulation-based study of colliding magnetized plasma flows. Our set-up mimics pulsed power laboratory astrophysical experiments but, with an appropriate frame change, is relevant to astrophysical jets with internal velocity variations. We track the evolution of the interaction region where the two flows collide. Cooling via radiative losses is included in the calculation. We systematically vary plasma beta (βm) in the flows, the strength of the cooling (Λ0), and the exponent (α) of temperature dependence of the cooling function. We find that for strong magnetic fields a counter-propagating jet called a ‘spine’ is driven by pressure from shocked toroidal fields. The spines eventually become unstable and break apart. We demonstrate how formation and evolution of the spines depend on initial flow parameters and provide a simple analytical model that captures the basic features of the flow.

     
    more » « less
  2. Free, publicly-accessible full text available January 1, 2025
  3. Abstract

    Spillover effects are considered important in evaluating the impacts of food, energy and water (FEW) conservation behaviors for limiting global greenhouse gas emissions and climate change. Failure to account for all possible spillovers, or indirect and unintended results of an intervention, not only obscures valuable information pertaining to the dynamic interactions across domains but also results in biased estimates. In this study, we first systematically reviewed articles that investigate the idea that the performance of one pro-environmental behavior influences the conduct of subsequent behaviors(s) from the FEW domains. From our review of 48 studies in the last decade, we note that a big part of the discussion on spillover concerns the nature and direction of causal relationships between individual FEW conservation behaviors. We identify a critical gap in the literature regarding the distinction between spillover effects caused by the interventions as distinct from those caused by the primary behaviors. Next, we conducted a quantitative meta-analysis of the reviewed empirical studies to find a modest but overall positive spillover effect. Finally, we reviewed the theoretical and methodological plurality in the FEW spillover literature using a systemic thinking lens to summarize what is already known and identify future challenges and research opportunities with significant policy implications.

     
    more » « less
    Free, publicly-accessible full text available July 1, 2024
  4. The conversion of forest to agriculture is considered one of the greatest threats to avian biodiversity, yet how species respond to habitat modification throughout the annual cycle remains unknown. We examined whether forest bird associations with agricultural habitats vary throughout the year, and if species traits influence these relationships. Using data from the eBird community‐science program, we investigated associations between agriculturally‐modified land cover and the occurrence of 238 forest bird species based on three sets of avian traits: migratory strategy, dietary guild, and foraging strategy. We found that the influence of agriculturally‐modified land cover on species distributions varied widely across periods and trait groups but highlighting several broad findings. First, migratory species showed strong seasonal differences in their response to agricultural land cover while resident species did not. Second, there was a migratory strategy by season interaction; Neotropical migrants were most negatively influenced by agricultural land cover during the breeding period while short‐distance migrants were most negatively influenced during the non‐breeding period. Third, regardless of season, some dietary (e.g. insectivores) and foraging guilds (e.g. bark foragers) consistently responded more negatively to agricultural land cover than others (e.g. omnivores and ground foragers, respectively). Fourth, there were greater differences among dietary guilds in their responses to agricultural land cover during the breeding period than during the non‐breeding period, perhaps reflecting how different habitat and ecological requirements enhance the susceptibility of some guilds during reproduction. These results suggest that management efforts across the annual cycle may be oversimplified and thus ineffective when based on broad ecological generalisations that are static in space and time.

     
    more » « less
    Free, publicly-accessible full text available September 1, 2024
  5. Abstract

    The radiation of bioturbation during the Ediacaran–Cambrian transition has long been hypothesized to have oxygenated sediments, triggering an expansion of the habitable benthic zone and promoting increased infaunal tiering in early Paleozoic benthic communities. However, the effects of bioturbation on sediment oxygen are underexplored with respect to the importance of biomixing and bioirrigation, two bioturbation processes which can have opposite effects on sediment redox chemistry. We categorized trace fossils from the Ediacaran and Terreneuvian as biomixing or bioirrigation fossils and integrated sedimentological proxies for bioturbation intensity with biogeochemical modeling to simulate oxygen penetration depths through the Ediacaran–Cambrian transition. Ultimately, we find that despite dramatic increases in ichnodiversity in the Terreneuvian, biomixing remains the dominant bioturbation behavior, and in contrast to traditional assumptions, Ediacaran–Cambrian bioturbation was unlikely to have resulted in extensive oxygenation of shallow marine sediments globally.

     
    more » « less
    Free, publicly-accessible full text available July 1, 2024
  6. Free, publicly-accessible full text available May 1, 2024
  7. Free, publicly-accessible full text available September 6, 2024