skip to main content


Search for: All records

Creators/Authors contains: "Frank, N."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Abstract. Short-lived highly reactive atmospheric species, such as organic peroxy radicals (RO2) and stabilized Criegee intermediates (SCIs), play an important role in controlling the oxidative removal and transformation of many natural and anthropogenic trace gases in the atmosphere. Direct speciated measurements of these components are extremely helpful for understanding their atmospheric fate and impact. We describe thedevelopment of an online method for measurements of SCIs and RO2 inlaboratory experiments using chemical derivatization and spin trappingtechniques combined with H3O+ and NH4+ chemicalionization mass spectrometry (CIMS). Using chemical derivatization agentswith low proton affinity, such as electron-poor carbonyls, we scavenge allSCIs produced from a wide range of alkenes without depleting CIMS reagentions. Comparison between our measurements and results from numericmodeling, using a modified version of the Master Chemical Mechanism, showsthat the method can be used for the quantification of SCIs in laboratoryexperiments with a detection limit of 1.4×107 molecule cm−3for an integration time of 30 s with the instrumentation used in this study. Weshow that spin traps are highly reactive towards atmospheric radicals andform stable adducts with them by studying the gas-phase kinetics of thereaction of spin traps with the hydroxyl radical (OH). We also demonstrate that spin trapadducts with SCIs and RO2 can be simultaneously probed and quantified under laboratory conditions with a detection limit of 1.6×108 molecule cm−3 for an integration time of 30 s for RO2 species with the instrumentation used in this study. Spin trapping prevents radical secondary reactions and cycling, ensuring that measurements are not biased by chemical interferences, and it can be implemented for detecting RO2 species in laboratory studies and potentially in the ambient atmosphere. 
    more » « less
  2. Abstract

    Accurate estimates of aerosol refractive index (RI) are critical for modeling aerosol‐radiation interaction, yet this information is limited for ambient organic aerosols, leading to large uncertainties in estimating aerosol radiative effects. We present a semi‐empirical model that predicts the real RInof organic aerosol material from its widely measured oxygen‐to‐carbon (O:C) and hydrogen‐to‐carbon (H:C) elemental ratios. The model was based on the theoretical framework of Lorenz‐Lorentz equation and trained withn‐values at 589 nm () of 160 pure compounds. The predictions can be expanded to predictn‐values in a wide spectrum between 300 and 1,200 nm. The model was validated with newly measured and literature datasets ofn‐values for laboratory secondary organic aerosol (SOA) materials. Uncertainties ofpredictions for all SOA samples are within5%. The model suggests that‐values of organic aerosols may vary within a relatively small range for typical O:C and H:C values observed in the atmosphere.

     
    more » « less
  3. null (Ed.)
  4. null (Ed.)