skip to main content


Search for: All records

Creators/Authors contains: "Fraser, M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    Extragalactic fast X-ray transients (FXTs) are a class of soft (0.3–10 keV) X-ray transients lasting a few hundred seconds to several hours. Several progenitor mechanisms have been suggested to produce FXTs, including supernova shock breakouts, binary neutron star mergers, or tidal disruptions involving an intermediate-mass black hole and a white dwarf. We present detailed host studies, including spectroscopic observations of the host galaxies of seven XMM-Newton-discovered FXTs. The candidate hosts lie at redshifts 0.0928 <z < 0.645 implying peak X-ray luminosities of 1043 erg s−1<LX < 1045 erg s−1 and physical offsets of 1 kpc < rproj < 22 kpc. These observations increase the number of FXTs with a spectroscopic redshift measurement by a factor of 2, although we note that one event is re-identified as a Galactic flare star. We infer host star formation rates and stellar masses by fitting the combined spectroscopic and archival photometric data. We also report on a contemporaneous optical counterpart search to the FXTs in Pan-STARRS and ATLAS by performing forced photometry at the position of the FXTs. We do not find any counterpart in our search. Given our constraints, including peak X-ray luminosities, optical limits, and host properties, we find that XRT 110 621 is consistent with an supernova shock breakout (SN SBO) event. Spectroscopic redshifts of likely host galaxies for four events imply peak X-ray luminosities that are too high to be consistent with SN SBOs, but we are unable to discard either the binary neutron star or white dwarf–intermediate-mass black hole tidal disruption event scenarios for these FXTs.

     
    more » « less
  2. ABSTRACT

    The absence of Type IIP core-collapse supernovae arising from progenitors above 17 solar masses suggests the existence of another evolutionary path by which massive stars end their lives. The direct collapse of a stellar core to a black hole without the production of a bright, explosive transient is expected to produce a long-lived, dim, red transient known as a failed supernova. Despite the detection of a number of candidates for disappearing massive stars in recent years, conclusive observational evidence for failed supernovae remains elusive. A custom-built pipeline designed for the detection of faint transients is used to re-analyse 10 yr of observations of 231 nearby galaxies from the PTF/ZTF surveys. This analysis recovers known supernovae, and yields a number of interesting transients. However, none of these are consistent with a failed supernova. Through Monte Carlo tests the recovery efficiency of our pipeline is quantified. By assuming failed supernovae occur as a Poissonian process with zero detections in the data set, 95 per cent upper limits to the rate of failed supernovae are calculated as a function of failed supernova absolute magnitude. We estimate failed supernovae to be less than 0.61, 0.33, 0.26, or 0.23 of the core-collapse SN rate for absolute magnitudes of −11, −12, −13, and −14, respectively. Finally, we show that if they exist, the Vera C. Rubin Observatory will find 1.7–3.7 failed SNe per year for an absolute bolometric luminosity of ∼6 × 1039 erg s−1 out to distances of 33–43 Mpc, depending on their assumed spectral energy distribution.

     
    more » « less
  3. ABSTRACT Photometric and spectroscopic data for two Low Luminosity Type IIP Supernovae (LL SNe IIP) 2020cxd and 2021aai are presented. SN 2020cxd was discovered 2 d after explosion at an absolute magnitude of Mr  = −14.02 ± 0.21 mag, subsequently settling on a plateau which lasts for ∼120 d. Through the luminosity of the late light curve tail, we infer a synthesized 56Ni mass of (1.8 ± 0.5) × 10−3 M⊙. During the early evolutionary phases, optical spectra show a blue continuum ($T\, \gt $8000 K) with broad Balmer lines displaying a P Cygni profile, while at later phases, Ca ii, Fe ii, Sc ii, and Ba ii lines dominate the spectra. Hydrodynamical modelling of the observables yields $R\, \simeq$ 575 R⊙ for the progenitor star, with Mej  = 7.5 M⊙ and $E\, \simeq$ 0.097 foe emitted during the explosion. This low-energy event originating from a low-mass progenitor star is compatible with both the explosion of a red supergiant (RSG) star and with an Electron Capture Supernova arising from a super asymptotic giant branch star. SN 2021aai reaches a maximum luminosity of Mr  = −16.57 ± 0.23 mag (correcting for AV = 1.92 mag), at the end of its remarkably long plateau (∼140 d). The estimated 56Ni mass is (1.4 ± 0.5) × 10−2 M⊙. The expansion velocities are compatible with those of other LL SNe IIP (few 103 km s−1). The physical parameters obtained through hydrodynamical modelling are $R\, \simeq$ 575 R⊙, Mej = 15.5 M⊙, and E = 0.4 foe. SN 2021aai is therefore interpreted as the explosion of an RSG, with properties that bridge the class of LL SNe IIP with standard SN IIP events. 
    more » « less
  4. Abstract

    We present the discovery and extensive follow-up of a remarkable fast-evolving optical transient, AT 2022aedm, detected by the Asteroid Terrestrial impact Last Alert Survey (ATLAS). In the ATLASoband, AT 2022aedm exhibited a rise time of 9 ± 1 days, reaching a luminous peak withMg≈ −22 mag. It faded by 2 mag in thegband during the next 15 days. These timescales are consistent with other rapidly evolving transients, though the luminosity is extreme. Most surprisingly, the host galaxy is a massive elliptical with negligible current star formation. Radio and X-ray observations rule out a relativistic AT 2018cow–like explosion. A spectrum in the first few days after explosion showed short-lived Heiiemission resembling young core-collapse supernovae, but obvious broad supernova features never developed; later spectra showed only a fast-cooling continuum and narrow, blueshifted absorption lines, possibly arising in a wind withv≈ 2700 km s−1. We identify two further transients in the literature (Dougie in particular, as well as AT 2020bot) that share similarities in their luminosities, timescales, color evolution, and largely featureless spectra and propose that these may constitute a new class of transients: luminous fast coolers. All three events occurred in passive galaxies at offsets of ∼4–10 kpc from the nucleus, posing a challenge for progenitor models involving massive stars or black holes. The light curves and spectra appear to be consistent with shock breakout emission, though this mechanism is usually associated with core-collapse supernovae. The encounter of a star with a stellar-mass black hole may provide a promising alternative explanation.

     
    more » « less
  5. ABSTRACT

    Over the past few years, ∼30 extragalactic fast X-ray transients (FXRTs) have been discovered, mainly in Chandra and XMM-Newton data. Their nature remains unclear, with proposed origins, including a double neutron star merger, a tidal disruption event involving an intermediate-mass black hole and a white dwarf, or a supernova shock breakout. A decisive differentiation between these three promising mechanisms for their origin requires an understanding of the FXRT energetics, environments, and/or host properties. We present optical observations obtained with the Very Large Telescope for the FXRTs XRT 000519 and XRT 110103 and Gran Telescopio Canarias observations for XRT 000519 designed to search for host galaxies of these FXRTs. In the gs, rs, and R-band images, we detect an extended source on the north-west side of the $\sim \, 1^{\prime \prime }$ (68 per cent confidence) error circle of the X-ray position of XRT 000519 with a Kron magnitude of gs = 26.29 ± 0.09 (AB magnitude). We discuss the XRT 000519 association with the probable host candidate for various possible distances, and we conclude that if XRT 000519 is associated with the host candidate a supernova shock breakout scenario is likely excluded. No host galaxy is found near XRT 110103 down to a limiting magnitude of R > 25.8.

     
    more » « less
  6. We present photometric and spectroscopic data on three extragalactic luminous red novae (LRNe): AT 2018bwo , AT 2021afy , and AT 2021blu . AT 2018bwo was discovered in NGC 45 (at about 6.8 Mpc) a few weeks after the outburst onset. During the monitoring period, the transient reached a peak luminosity of 10 40 erg s −1 . AT 2021afy , hosted by UGC 10043 (∼49.2 Mpc), showed a double-peaked light curve, with the two peaks reaching a similar luminosity of 2.1(±0.6)×10 41 erg s −1 . Finally, for AT 2021blu in UGC 5829 (∼8.6 Mpc), the pre-outburst phase was well-monitored by several photometric surveys, and the object showed a slow luminosity rise before the outburst. The light curve of AT 2021blu was sampled with an unprecedented cadence until the object disappeared behind the Sun, and it was then recovered at late phases. The light curve of LRN AT 2021blu shows a double peak, with a prominent early maximum reaching a luminosity of 6.5 × 10 40 erg s −1 , which is half of that of AT 2021afy . The spectra of AT 2021afy and AT 2021blu display the expected evolution for LRNe: a blue continuum dominated by prominent Balmer lines in emission during the first peak, and a redder continuum consistent with that of a K-type star with narrow absorption metal lines during the second, broad maximum. The spectra of AT 2018bwo are markedly different, with a very red continuum dominated by broad molecular features in absorption. As these spectra closely resemble those of LRNe after the second peak, AT 2018bwo was probably discovered at the very late evolutionary stages. This would explain its fast evolution and the spectral properties compatible with that of an M-type star. From the analysis of deep frames of the LRN sites years before the outburst, and considerations of the light curves, the quiescent progenitor systems of the three LRNe were likely massive, with primaries ranging from about 13 M ⊙ for AT 2018bwo , to 14 −1 +4 M ⊙ for AT 2021blu , and over 40 M ⊙ for AT 2021afy . 
    more » « less
  7. null (Ed.)
    ABSTRACT We present the photometric and spectroscopic evolution of supernova (SN) 2019cad during the first ∼100 d from explosion. Based on the light-curve morphology, we find that SN 2019cad resembles the double-peaked Type Ib/c SN 2005bf and the Type Ic PTF11mnb. Unlike those two objects, SN 2019cad also shows the initial peak in the redder bands. Inspection of the g-band light curve indicates the initial peak is reached in ∼8 d, while the r-band peak occurred ∼15 d post-explosion. A second and more prominent peak is reached in all bands at ∼45 d past explosion, followed by a fast decline from ∼60 d. During the first 30 d, the spectra of SN 2019cad show the typical features of a Type Ic SN, however, after 40 d, a blue continuum with prominent lines of Si ii λ6355 and C ii λ6580 is observed again. Comparing the bolometric light curve to hydrodynamical models, we find that SN 2019cad is consistent with a pre-SN mass of 11 M⊙, and an explosion energy of 3.5 × 1051 erg. The light-curve morphology can be reproduced either by a double-peaked 56Ni distribution with an external component of 0.041 M⊙, and an internal component of 0.3 M⊙ or a double-peaked 56Ni distribution plus magnetar model (P ∼ 11 ms and B ∼ 26 × 1014 G). If SN 2019cad were to suffer from significant host reddening (which cannot be ruled out), the 56Ni model would require extreme values, while the magnetar model would still be feasible. 
    more » « less
  8. We present an observational study of the luminous red nova (LRN) AT 2021biy in the nearby galaxy NGC 4631. The field of the object was routinely imaged during the pre-eruptive stage by synoptic surveys, but the transient was detected only at a few epochs from ∼231 days before maximum brightness. The LRN outburst was monitored with unprecedented cadence both photometrically and spectroscopically. AT 2021biy shows a short-duration blue peak, with a bolometric luminosity of ∼1.6 × 10 41 erg s −1 , followed by the longest plateau among LRNe to date, with a duration of 210 days. A late-time hump in the light curve was also observed, possibly produced by a shell-shell collision. AT 2021biy exhibits the typical spectral evolution of LRNe. Early-time spectra are characterised by a blue continuum and prominent H emission lines. Then, the continuum becomes redder, resembling that of a K-type star with a forest of metal absorption lines during the plateau phase. Finally, late-time spectra show a very red continuum ( T BB  ≈ 2050 K) with molecular features (e.g., TiO) resembling those of M-type stars. Spectropolarimetric analysis indicates that AT 2021biy has local dust properties similar to those of V838 Mon in the Milky Way Galaxy. Inspection of archival Hubble Space Telescope data taken on 2003 August 3 reveals a ∼20 M ⊙ progenitor candidate with log ( L / L ⊙ ) = 5.0 dex and T eff  = 5900 K at solar metallicity. The above luminosity and colour match those of a luminous yellow supergiant. Most likely, this source is a close binary, with a 17–24 M ⊙ primary component. 
    more » « less
  9. ABSTRACT We present the results of a multiwavelength follow-up campaign for the luminous nuclear transient Gaia16aax, which was first identified in 2016 January. The transient is spatially consistent with the nucleus of an active galaxy at z = 0.25, hosting a black hole of mass ${\sim }6\times 10^8\, \mathrm{M}_\odot$. The nucleus brightened by more than 1 mag in the Gaia G band over a time-scale of less than 1 yr, before fading back to its pre-outburst state over the following 3 yr. The optical spectra of the source show broad Balmer lines similar to the ones present in a pre-outburst spectrum. During the outburst, the H α and H β emission lines develop a secondary peak. We also report on the discovery of two transients with similar light-curve evolution and spectra: Gaia16aka and Gaia16ajq. We consider possible scenarios to explain the observed outbursts. We exclude that the transient event could be caused by a microlensing event, variable dust absorption or a tidal encounter between a neutron star and a stellar mass black hole in the accretion disc. We consider variability in the accretion flow in the inner part of the disc, or a tidal disruption event of a star ${\ge } 1 \, \mathrm{M}_{\odot }$ by a rapidly spinning supermassive black hole as the most plausible scenarios. We note that the similarity between the light curves of the three Gaia transients may be a function of the Gaia alerts selection criteria. 
    more » « less
  10. null (Ed.)