skip to main content


Search for: All records

Creators/Authors contains: "Freericks, J. K."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The free expansion of a Gaussian wavepacket is a problem commonly discussed in undergraduate quantum classes by directly solving the time-dependent Schrödinger equation as a differential equation. In this work, we provide an alternative way to calculate the free expansion by recognizing that the Gaussian wavepacket can be thought of as the ground state of a harmonic oscillator with its frequency adjusted to give the initial width of the Gaussian, and the time evolution, given by the free-particle Hamiltonian, being the same as the application of a time-dependent squeezing operator to the harmonic oscillator ground state. Operator manipulations alone (including the Hadamard lemma and the exponential disentangling identity) then allow us to directly solve the problem. As quantum instruction evolves to include more quantum information science applications, reworking this well-known problem using a squeezing formalism will help students develop intuition for how squeezed states are used in quantum sensing. 
    more » « less
    Free, publicly-accessible full text available June 1, 2024
  2. The confluent hypergeometric equation, also known as Kummer's equation, is one of the most important differential equations in physics, chemistry, and engineering. Its two power series solutions are the Kummer function, M(a,b,z), often referred to as the confluent hypergeometric function of the first kind, and M ≡ z1-bM(1+a-b, 2-b,z), where a and b are parameters that appear in the differential equation. A third function, the Tricomi function, U(a,b,z), sometimes referred to as the confluent hypergeometric function of the second kind, is also a solution of the confluent hypergeometric equation that is routinely used. Contrary to common procedure, all three of these functions (and more) must be considered in a search for the two linearly independent solutions of the confluent hypergeometric equation. There are situations, when a, b, and a - b are integers, where one of these functions is not defined, or two of the functions are not linearly independent, or one of the linearly independent solutions of the differential equation is different from these three functions. Many of these special cases correspond precisely to cases needed to solve problems in physics. This leads to significant confusion about how to work with confluent hypergeometric equations, in spite of authoritative references such as the NIST Digital Library of Mathematical Functions. Here, we carefully describe all of the different cases one has to consider and what the explicit formulas are for the two linearly independent solutions of the confluent hypergeometric equation. The procedure to properly solve the confluent hypergeometric equation is summarized in a convenient table. As an example, we use these solutions to study the bound states of the hydrogenic atom, correcting the standard treatment in textbooks. We also briefly consider the cutoff Coulomb potential. We hope that this guide will aid physicists to properly solve problems that involve the confluent hypergeometric differential equation. 
    more » « less
  3. null (Ed.)
  4. null (Ed.)
    The variational quantum eigensolver has been proposed as a low-depth quantum circuit that can be employed to examine strongly correlated systems on today’s noisy intermediate-scale quantum computers. We examine details associated with the factorized form of the unitary coupled-cluster variant of this algorithm. We apply it to a simple strongly correlated condensed-matter system with nontrivial behavior — the four-site Hubbard model at half-filling. This work show some of the subtle issues one needs to take into account when applying this algorithm in practice, especially to condensed-matter systems. 
    more » « less