skip to main content


Search for: All records

Creators/Authors contains: "Fu, Kai-Mei C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Resonant enhancement of nonlinear photonic processes is critical for the scalability of applications such as long-distance entanglement generation. To implement nonlinear resonant enhancement, multiple resonator modes must be individually tuned onto a precise set of process wavelengths, which requires multiple linearly-independent tuning methods. Using coupled auxiliary resonators to indirectly tune modes in a multi-resonant nonlinear cavity is particularly attractive because it allows the extension of a single physical tuning mechanism, such as thermal tuning, to provide the required independent controls. Here we model and simulate the performance and tradeoffs of a coupled-resonator tuning scheme which uses auxiliary resonators to tune specific modes of a multi-resonant nonlinear process. Our analysis determines the tuning bandwidth for steady-state mode field intensity can significantly exceed the inter-cavity coupling rategif the total quality factor of the auxiliary resonator is higher than the multi-mode main resonator. Consequently, over-coupling a nonlinear resonator mode to improve the maximum efficiency of a frequency conversion process will simultaneously expand the auxiliary resonator tuning bandwidth for that mode, indicating a natural compatibility with this tuning scheme. We apply the model to an existing small-diameter triply-resonant ring resonator design and find that a tuning bandwidth of 136 GHz ≈ 1.1 nm can be attained for a mode in the telecom band while limiting excess scattering losses to a quality factor of 106. Such range would span the distribution of inhomogeneously broadened quantum emitter ensembles as well as resonator fabrication variations, indicating the potential for the auxiliary resonators to enable not only low-loss telecom conversion but also the generation of indistinguishable photons in a quantum network.

     
    more » « less
  2. Neutral shallow donors in zinc oxide (ZnO) are spin qubits with optical access via the donor-bound exciton. This spin–photon interface enables applications in quantum networking, memories, and transduction. Essential optical parameters which impact the spin–photon interface include radiative lifetime, optical inhomogeneous and homogeneous linewidth, and optical depth. We study the donor-bound exciton optical linewidth properties of Al, Ga, and In donors in single-crystal ZnO. The ensemble photoluminescence linewidth ranges from 4 to 11 GHz, less than two orders of magnitude larger than the expected lifetime-limited linewidth. The ensemble linewidth remains narrow in absorption through samples with an estimated optical depth up to several hundred. The primary thermal relaxation mechanism is identified and found to have a negligible contribution to the total linewidth at 2 K. We find that inhomogeneous broadening due to the disordered isotopic environment in natural ZnO is significant, contributing 2 GHz. Two-laser spectral hole burning measurements indicate that the dominant mechanism, however, is homogeneous. Despite this broadening, the high homogeneity, large optical depth, and potential for isotope purification indicate that the optical properties of the ZnO donor-bound exciton are promising for a wide range of quantum technologies, and motivate a need to improve the isotope and chemical purity of ZnO for quantum technologies.

     
    more » « less
  3. Abstract Solid state quantum defects are promising candidates for scalable quantum information systems which can be seamlessly integrated with the conventional semiconductor electronic devices within the 3D monolithically integrated hybrid classical-quantum devices. Diamond nitrogen-vacancy (NV) center defects are the representative examples, but the controlled positioning of an NV center within bulk diamond is an outstanding challenge. Furthermore, quantum defect properties may not be easily tuned for bulk crystalline quantum defects. In comparison, 2D semiconductors, such as transition metal dichalcogenides (TMDs), are promising solid platform to host a quantum defect with tunable properties and a possibility of position control. Here, we computationally discover a promising defect family for spin qubit realization in 2D TMDs. The defects consist of transition metal atoms substituted at chalcogen sites with desirable spin-triplet ground state, zero-field splitting in the tens of GHz, and strong zero-phonon coupling to optical transitions in the highly desirable telecom band. 
    more » « less
  4. We demonstrate quasi-phase matched, triply-resonant sum frequency conversion in 10.6-µm-diameter integrated gallium phosphide ring resonators. A small-signal, waveguide-to-waveguide power conversion efficiency of 8 ± 1.1%/mW; is measured for conversion from telecom (1536 nm) and near infrared (1117 nm) to visible (647 nm) wavelengths with an absolute power conversion efficiency of 6.3 ± 0.6%; measured at saturation pump power. For the complementary difference frequency generation process, a single photon conversion efficiency of 7.2%/mW from visible to telecom is projected for resonators with optimized coupling. Efficient conversion from visible to telecom will facilitate long-distance transmission of spin-entangled photons from solid-state emitters such as the diamond NV center, allowing long-distance entanglement for quantum networks.

     
    more » « less
  5. null (Ed.)
  6. Abstract

    The compact size, scalability, and strongly confined fields in integrated photonic devices enable new functionalities in photonic networking and information processing, both classical and quantum. Gallium phosphide (GaP) is a promising material for active integrated photonics due to its high refractive index, wide bandgap, strong nonlinear properties, and large acousto‐optic figure of merit. This study demonstrates that silicon‐lattice‐matched boron‐doped GaP (BGaP), grown at the 12‐inch wafer scale, provides similar functionalities as GaP. BGaP optical resonators exhibit intrinsic quality factors exceeding 25,000 and 200,000 at visible and telecom wavelengths, respectively. It further demonstrates the electromechanical generation of low‐loss acoustic waves and an integrated acousto‐optic (AO) modulator. High‐resolution spatial and compositional mapping, combined with ab initio calculations, indicate two candidates for the excess optical loss in the visible band: the silicon‐GaP interface and boron dimers. These results demonstrate the promise of the BGaP material platform for the development of scalable AO technologies at telecom and provide potential pathways toward higher performance at shorter wavelengths.

     
    more » « less