skip to main content


Search for: All records

Creators/Authors contains: "Gallagher, Timothy"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Drylands occupy nearly 40% of the land surface and comprise a globally significant carbon reservoir. Dryland‐atmosphere carbon exchange may regulate interannual variability in atmospheric CO2. Quantifying soil respiration rates in these environments is often complicated by the presence of calcium carbonates, which are a common feature of dryland soils. We show with high‐precision O2measurements in a laboratory potted soil experiment that respiration rates after watering were similar in control and carbonate treatment soils. However, CO2concentrations were up to 72% lower in the carbonate treatment soil because CO2was initially consumed during calcite dissolution. Subsequently, CO2concentrations were over 166% greater in the carbonate treatment soil as respiration slowed and calcite precipitated, releasing CO2. Elevated δ13C values of soil CO2(>6‰ higher in the treatment than control) confirm that observed differences were due to calcite dissolution. These findings demonstrate that calcite dissolution and precipitation can occur rapidly enough to affect soil gas compositions and that changes in soil CO2are not always directly related to changes in soil respiration rates. Studies of local soil respiration rates and carbon exchange are likely to be influenced by dissolution and precipitation of calcium carbonates in soils. We estimate that one fifth of global soil respiration occurs in soils that contain some amount of soil carbonate, underscoring the need to account for its obscuring effects when trying to quantify soil respiration and net ecosystem exchange on a regional or global scale.

     
    more » « less
  2. Millimeter wave (mmW) communications is viewed as the key enabler of 5G cellular networks due to vast spectrum availability that could boost peak rate and capacity. Due to increased propagation loss in mmW band, transceivers with massive antenna array are required to meet a link budget, but their power consumption and cost become limiting factors for commercial systems. Radio designs based on hybrid digital and analog array architectures and the usage of radio frequency (RF) signal processing via phase shifters have emerged as potential solutions to improve radio energy efficiency and deliver performances close to the conventional digital antenna arrays. In this paper, we provide an overview of the state-of-the-art mmW massive antenna array designs and comparison among three array architectures, namely digital array, partially-connected hybrid array (sub-array), and fully-connected hybrid array. The comparison of performance, power, and area for these three architectures is performed for three representative 5G downlink use cases, which cover a range of pre-beamforming signal-to-noise-ratios (SNR) and multiplexing regimes. This is the first study to comprehensively model and quantitatively analyze all design aspects and criteria including: 1) optimal linear precoder, 2) impact of quantization error in digital-to-analog converter (DAC) and phase shifters, 3) RF signal distribution network, 4) power and area estimation based on state-of-the-art mmW circuits including baseband digital precoding, digital signal distribution network, high-speed DACs, oscillators, mixers, phase shifters, RF signal distribution network, and power amplifiers. Our simulation results show that the fully-digital array architecture is the most power and area efficient compared against optimized designs for sub-array and hybrid array architectures. Our analysis shows that digital array architecture benefits greatly from multi-user multiplexing. The analysis also reveals that sub-array architecture performance is limited by reduced beamforming gain due to array partitioning, while the system bottleneck of the fully-connected hybrid architecture is the excessively complicated and power hungry RF signal distribution network. 
    more » « less
  3. Abstract

    Paleosols preserved in the Red Clay depositional sequence of the Chinese Loess Plateau record information about vegetation and regional hydrology responses to global temperature variation throughout the late Miocene and Pliocene. Reconstructing spatial and temporal patterns of environmental change across the Loess Plateau from carbon isotopes of pedogenic carbonate (δ13Ccarb) is complicated because multiple factors affect δ13Ccarbvalues and higher resolution records do not exist along the northern margin of the Loess Plateau. To address these needs, we present paired carbon isotope records of pedogenic carbonate and occluded organic matter (δ13Corg) from 697 discrete nodules sampled from 119 different depths at the Jiaxian section, North Central China. Between 7.6 and 2.4 Ma, δ13Ccarbvalues increase by nearly 5‰, while δ13Corgvalues increase by 2.5‰. These increases are explained by a progressive decline in moisture availability through time, and there is no definitive evidence from these δ13C data for C4vegetation at the Jiaxian site until after 3.6 Ma. Comparison of the Jiaxian record to other Loess Plateau sections reveals a consistent spatial gradient with δ13Ccarbvalues becoming higher and more variable to the N‐NW. Additionally, an independent index of monsoonal precipitation from a southern site corresponds to fluctuations in δ13Ccarbvalues at Jiaxian, while southern δ13Ccarbrecords remain more stable. These spatial patterns are explained by a progressive decline in moisture availability across the Loess Plateau through the Late Miocene and Pliocene, with δ13Ccarbvalues being more sensitive to moisture availability under consistently more arid conditions to the NW.

     
    more » « less
  4. Abstract

    Allylation and conjunctive cross‐coupling represent two useful, yet largely distinct, reactivity paradigms in catalysis. The union of these two processes would offer exciting possibilities in organic synthesis but remains largely unknown. Herein, we report the use of allyl electrophiles in nickel‐catalyzed conjunctive cross‐coupling with a non‐conjugated alkene and dimethylzinc. The transformation is enabled by weakly coordinating, monodentate aza‐heterocycle directing groups that are useful building blocks in synthesis, including saccharin, pyridones, pyrazoles, and triazoles. The reaction occurs under mild conditions and is compatible with a wide range of allyl electrophiles. High chemoselectivity through substrate directivity is demonstrated by the facile reactivity of the β‐γ alkene of the starting material, whereas the ϵ‐ζ alkene of the product is preserved. The generality of this approach is further illustrated through the development of an analogous method with alkyne substrates. Mechanistic studies reveal the importance of the dissociation of the weakly coordinating directing group to allow the allyl moiety to bind and facilitate C(sp3)−C(sp3) reductive elimination.

     
    more » « less
  5. Abstract

    Allylation and conjunctive cross‐coupling represent two useful, yet largely distinct, reactivity paradigms in catalysis. The union of these two processes would offer exciting possibilities in organic synthesis but remains largely unknown. Herein, we report the use of allyl electrophiles in nickel‐catalyzed conjunctive cross‐coupling with a non‐conjugated alkene and dimethylzinc. The transformation is enabled by weakly coordinating, monodentate aza‐heterocycle directing groups that are useful building blocks in synthesis, including saccharin, pyridones, pyrazoles, and triazoles. The reaction occurs under mild conditions and is compatible with a wide range of allyl electrophiles. High chemoselectivity through substrate directivity is demonstrated by the facile reactivity of the β‐γ alkene of the starting material, whereas the ϵ‐ζ alkene of the product is preserved. The generality of this approach is further illustrated through the development of an analogous method with alkyne substrates. Mechanistic studies reveal the importance of the dissociation of the weakly coordinating directing group to allow the allyl moiety to bind and facilitate C(sp3)−C(sp3) reductive elimination.

     
    more » « less