skip to main content


Search for: All records

Creators/Authors contains: "Gallington, Leighanne C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Many functional materials have relatively low decomposition temperatures ( T ≤ 400 °C), which makes their synthesis challenging using conventional high-temperature solid-state chemistry. Therefore, non-conventional techniques such as metathesis, hydrothermal, and solution chemistry are often employed to access low-temperature phases; the discovery of new chemistries is needed to expand access to these phases. This contribution discusses the use of triphenylphosphine (PPh 3 ) as a molten flux to synthesize superconducting iron selenide (Fe 1+δ Se) at low temperature ( T = 325 °C). Powder X-ray diffraction and magnetism measurements confirm the successful formation of superconducting iron selenide while nuclear magnetic resonance spectroscopy and in situ X-ray diffraction show that the formation of superconducting FeSe at low temperatures is enabled by an adduct between the triphenylphosphine and selenium. Exploration of the Fe–Se–PPh 3 phase space indicates that the PPh 3 –Se adduct effectively reduces the chemical potential of the selenium at high concentrations of triphenylphosphine. This contribution demonstrates that the use of a poorly-solvating yet reactive flux has the potential to enable the synthesis of new low-temperature phases of solid materials. 
    more » « less
  2. Abstract

    Relating the synthesis conditions of materials to their functional performance has long been an experience‐based trial‐and‐error process. However, this methodology is not always efficient in identifying an appropriate protocol and can lead to overlooked opportunities for the performance optimization of materials through simple modifications of the synthesis process. In this work, the authors systematically track the structural evolution in the synthesis of a representative disordered rock salt (a promising next‐generation Li‐ion cathode material) at the scale of both the long‐range crystal structure and the short‐range atomic structure using various in situ and ex situ techniques, including transmission electron microscopy, X‐ray diffraction, and pair distribution function analysis. An optimization strategy is proposed for the synthesis protocol, leading to a remarkably enhanced capacity (specific energy) of 313 mAh g−1(987 Wh kg−1) at a low rate (20 mA g−1), with a capacity of more than 140 mAh g−1retained even at a very high cycling rate of 2000 mA g−1. This strategy is further rationalized using ab initio calculations, and important opportunities for synthetic optimization demonstrated in this study are highlighted.

     
    more » « less