skip to main content


Search for: All records

Creators/Authors contains: "Gao, Guanhui"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Bismuth ferrite has garnered considerable attention as a promising candidate for magnetoelectric spin-orbit coupled logic-in-memory. As model systems, epitaxial BiFeO3thin films have typically been deposited at relatively high temperatures (650–800 °C), higher than allowed for direct integration with silicon-CMOS platforms. Here, we circumvent this problem by growing lanthanum-substituted BiFeO3at 450 °C (which is reasonably compatible with silicon-CMOS integration) on epitaxial BaPb0.75Bi0.25O3electrodes. Notwithstanding the large lattice mismatch between the La-BiFeO3, BaPb0.75Bi0.25O3, and SrTiO3(001) substrates, all the layers in the heterostructures are well ordered with a [001] texture. Polarization mapping using atomic resolution STEM imaging and vector mapping established the short-range polarization ordering in the low temperature grown La-BiFeO3. Current-voltage, pulsed-switching, fatigue, and retention measurements follow the characteristic behavior of high-temperature grown La-BiFeO3, where SrRuO3typically serves as the metallic electrode. These results provide a possible route for realizing epitaxial multiferroics on complex-oxide buffer layers at low temperatures and opens the door for potential silicon-CMOS integration.

     
    more » « less
  2. Abstract

    In recent years, there has been a substantial surge in the investigation of transition‐metal dichalcogenides such as MoS2as a promising electrochemical catalyst. Inspired by denitrification enzymes such as nitrate reductase and nitrite reductase, the electrochemical nitrate reduction catalyzed by MoS2with varying local atomic structures is reported. It is demonstrated that the hydrothermally synthesized MoS2containing sulfur vacancies behaves as promising catalysts for electrochemical denitrification. With copper doping at less than 9% atomic ratio, the selectivity of denitrification to dinitrogen in the products can be effectively improved. X‐ray absorption characterizations suggest that two sulfur vacancies are associated with one copper dopant in the MoS2skeleton. DFT calculation confirms that copper dopants replace three adjacent Mo atoms to form a trigonal defect‐enriched region, introducing an exposed Mo reaction center that coordinates with Cu atom to increase N2selectivity. Apart from the higher activity and selectivity, the Cu‐doped MoS2also demonstrates remarkably improved tolerance toward oxygen poisoning at high oxygen concentration. Finally, Cu‐doped MoS2based catalysts exhibit very low specific energy consumption during the electrochemical denitrification process, paving the way for potential scale‐up operations.

     
    more » « less
  3. null (Ed.)
  4. null (Ed.)
    Abstract Oxygen reduction reaction towards hydrogen peroxide (H 2 O 2 ) provides a green alternative route for H 2 O 2 production, but it lacks efficient catalysts to achieve high selectivity and activity simultaneously under industrial-relevant production rates. Here we report a boron-doped carbon (B-C) catalyst which can overcome this activity-selectivity dilemma. Compared to the state-of-the-art oxidized carbon catalyst, B-C catalyst presents enhanced activity (saving more than 210 mV overpotential) under industrial-relevant currents (up to 300 mA cm −2 ) while maintaining high H 2 O 2 selectivity (85–90%). Density-functional theory calculations reveal that the boron dopant site is responsible for high H 2 O 2 activity and selectivity due to low thermodynamic and kinetic barriers. Employed in our porous solid electrolyte reactor, the B-C catalyst demonstrates a direct and continuous generation of pure H 2 O 2 solutions with high selectivity (up to 95%) and high H 2 O 2 partial currents (up to ~400 mA cm −2 ), illustrating the catalyst’s great potential for practical applications in the future. 
    more » « less
  5. null (Ed.)
    Electrochemical CO 2 or CO reduction to high-value C 2+ liquid fuels is desirable, but its practical application is challenged by impurities from cogenerated liquid products and solutes in liquid electrolytes, which necessitates cost- and energy-intensive downstream separation processes. By coupling rational designs in a Cu catalyst and porous solid electrolyte (PSE) reactor, here we demonstrate a direct and continuous generation of pure acetic acid solutions via electrochemical CO reduction. With optimized edge-to-surface ratio, the Cu nanocube catalyst presents an unprecedented acetate performance in neutral pH with other liquid products greatly suppressed, delivering a maximal acetate Faradaic efficiency of 43%, partial current of 200 mA⋅cm −2 , ultrahigh relative purity of up to 98 wt%, and excellent stability of over 150 h continuous operation. Density functional theory simulations reveal the role of stepped sites along the cube edge in promoting the acetate pathway. Additionally, a PSE layer, other than a conventional liquid electrolyte, was designed to separate cathode and anode for efficient ion conductions, while not introducing any impurity ions into generated liquid fuels. Pure acetic acid solutions, with concentrations up to 2 wt% (0.33 M), can be continuously produced by employing the acetate-selective Cu catalyst in our PSE reactor. 
    more » « less
  6. null (Ed.)
  7. Abstract

    Halide perovskites are revolutionizing the renewable energy sector owing to their high photovoltaic efficiency, low manufacturing cost, and flexibility. Their remarkable mobility and long carrier lifetime are also valuable for information technology, but fundamental challenges like poor stability under an electric field prevent realistic applications of halide perovskites in electronics. Here, it is discovered that valleytronics is a promising route to leverage the advantages of halide perovskites and derivatives for information storage and processing. The synthesized all‐inorganic lead‐free perovskite derivative, Cs3Bi2I9, exhibits strong light–matter interaction and parity‐dependent optically addressable valley degree of freedom. Robust optical helicity in all odd‐layer‐number crystals with inversion symmetry breaking is observed, indicating excitonic coherence extending well beyond 11 layers. The excellent optical and valley properties of Cs3Bi2I9arise from the unique parallel bands, according to first principles calculations. This discovery points to new materials design principles for scalable valleytronic devices and demonstrates the promise of perovskite derivatives beyond energy applications.

     
    more » « less