skip to main content


Search for: All records

Creators/Authors contains: "Ghosh, S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this report, the relative efficiency of cellulose nanocrystals (CNCs) and nanofibers (CNFs) to capture circulating tumor cells (CTCs) from the blood sample of head and neck cancer (HNC) patients was evaluated. Detection and enumeration of CTCs are critical for monitoring cancer progression. Both types of nanostructured cellulose were chemically modified with Epithelial Cell Adhesion Molecule (EpCAM) antibody and iron oxide nanoparticles. The EpCAM antibody facilitated the engagement of CTCs, promoting entrapment within the cellulose cage structure. Iron oxide nanoparticles, on the other hand, rendered the cages activatable via the use of a magnet for the capture and separation of entrapped CTCs. The efficiency of the network structures is shown in head and neck cancer (HNC) patients' blood samples. It was observed that the degree of chemical functionalization of hydroxyl groups located within the CNCs or CNFs with anti-EpCAM determined the efficiency of the system's interaction with CTCs. Further, our result indicated that inflexible scaffolds of nanocrystals interacted more efficiently with CTCs than that of the fibrous CNF scaffolds. Network structures derived from CNCs demonstrated comparable CTC capturing efficiency to commercial standard, OncoDiscover®. The output of the work will provide the chemical design principles of cellulosic materials intended for constructing affordable platforms for monitoring cancer progression in 'real time'. 
    more » « less
    Free, publicly-accessible full text available January 1, 2025
  2. Free, publicly-accessible full text available September 1, 2024
  3. ABSTRACT

    The star-forming activity in the H ii region RCW 42 is investigated using multiple wavebands, from near-infrared to radio wavelengths. Located at a distance of 5.8 kpc, this southern region has a bolometric luminosity of 1.8 × 106 L⊙. The ionized gas emission has been imaged at low radio frequencies of 610 and 1280 MHz using the Giant Metrewave Radio Telescope, India, and shows a large expanse of the H ii region, spanning 20 × 15 pc2. The average electron number density in the region is estimated to be ∼70 cm−3, which suggests an average ionization fraction of the cloud to be 11 % . An extended green object EGO G274.0649-01.1460 and several young stellar objects have been identified in the region using data from the 2MASS and Spitzer surveys. The dust emission from the associated molecular cloud is probed using Herschel Space Telescope, which reveals the presence of five clumps, C1-C5, in this region. Two millimetre emission cores of masses 380 and 390 M⊙ towards the radio emission peak have been identified towards C1 from the ALMA map at 1.4 mm. The clumps are investigated for their evolutionary stages based on association with various star-formation tracers, and we find that all the clumps are in active/evolved stage.

     
    more » « less
  4. Abstract Annihilation studies have established that positrons bind to most molecules. They also provide measurements of the positron-molecule binding energies, which are found to vary widely and depend upon molecular size and composition. Trends of binding energy with global parameters such as molecular polarizability and dipole moment have been discussed previously. In this paper, the dependence of binding energy on molecular geometry is investigated by studying resonant positron annihilation on selected pairs of isomers. It is found that molecular geometry can play a significant role in determining the binding energies even for isomers with very similar polarizabilities and dipole moments. The possible origins of this dependence are discussed. 
    more » « less