skip to main content


Search for: All records

Creators/Authors contains: "Giorgi, M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Exciton–polaritons are mixed light–matter particles offering a versatile solid state platform to study many-body physical effects. In this work, we demonstrate an electrically controlled polariton laser, in a compact, easy-to-fabricate and integrable configuration, based on a semiconductor waveguide. Interestingly, we show that polariton lasing can be achieved in a system without a global minimum in the polariton energy-momentum dispersion. The cavity modes for the laser emission are obtained by adding couples of specifically designed diffraction gratings on top of the planar waveguide, forming an in-plane Fabry–Perot cavity. It is due to the waveguide geometry that we can apply a transverse electric field to finely tune the laser energy and quality factor of the cavity modes. Remarkably, we exploit the system sensitivity to the applied electric field to achieve an electrically controlled population of coherent polaritons. The precise control that can be reached with the manipulation of the grating properties and of the electric field provides strong advantages to this device in terms of miniaturization and integrability, two main features for the future development of coherent sources for polaritonic technologies.

     
    more » « less
  2. A bstract The NA62 experiment at CERN targets the measurement of the ultra-rare $$ {K}^{+}\to {\pi}^{+}\nu \overline{\nu} $$ K + → π + ν ν ¯ decay, and carries out a broad physics programme that includes probes for symmetry violations and searches for exotic particles. Data were collected in 2016–2018 using a multi-level trigger system, which is described highlighting performance studies based on 2018 data. 
    more » « less
  3. Free, publicly-accessible full text available June 1, 2024
  4. A bstract A sample of 2 . 8 × 10 4 K + → π + μ + μ − candidates with negligible background was collected by the NA62 experiment at the CERN SPS in 2017–2018. The model-independent branching fraction is measured to be (9 . 15 ± 0 . 08) × 10 − 8 , a factor three more precise than previous measurements. The decay form factor is presented as a function of the squared dimuon mass. A measurement of the form factor parameters and their uncertainties is performed using a description based on Chiral Perturbation Theory at $$ \mathcal{O} $$ O ( p 6 ). 
    more » « less
  5. A bstract The NA62 experiment reports the branching ratio measurement $$ \mathrm{BR}\left({K}^{+}\to {\pi}^{+}\nu \overline{\nu}\right)=\left({10.6}_{-3.4}^{+4.0}\left|{}_{\mathrm{stat}}\right.\pm {0.9}_{\mathrm{syst}}\right)\times {10}^{-11} $$ BR K + → π + ν ν ¯ = 10.6 − 3.4 + 4.0 stat ± 0.9 syst × 10 − 11 at 68% CL, based on the observation of 20 signal candidates with an expected background of 7.0 events from the total data sample collected at the CERN SPS during 2016–2018. This provides evidence for the very rare K + → $$ {\pi}^{+}\nu \overline{\nu} $$ π + ν ν ¯ decay, observed with a significance of 3.4 σ . The experiment achieves a single event sensitivity of (0 . 839 ± 0 . 054) × 10 − 11 , corresponding to 10.0 events assuming the Standard Model branching ratio of (8 . 4 ± 1 . 0) × 10 − 11 . This measurement is also used to set limits on BR( K + → π + X ), where X is a scalar or pseudo-scalar particle. Details are given of the analysis of the 2018 data sample, which corresponds to about 80% of the total data sample. 
    more » « less
  6. null (Ed.)
    A bstract A search for the K + → π + X decay, where X is a long-lived feebly interacting particle, is performed through an interpretation of the K + → $$ {\pi}^{+}\nu \overline{\nu} $$ π + ν ν ¯ analysis of data collected in 2017 by the NA62 experiment at CERN. Two ranges of X masses, 0–110 MeV /c 2 and 154–260 MeV /c 2 , and lifetimes above 100 ps are considered. The limits set on the branching ratio, BR( K + → π + X ), are competitive with previously reported searches in the first mass range, and improve on current limits in the second mass range by more than an order of magnitude. 
    more » « less