skip to main content


Search for: All records

Creators/Authors contains: "Glotzer, Sharon C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    While the collective motion of active particles has been studied extensively, effective strategies to navigate particle swarms without external guidance remain elusive. We introduce a method to control the trajectories of two-dimensional swarms of active rod-like particles by confining the particles to rigid bounding membranes (vesicles) with non-uniform curvature. We show that the propelling agents spontaneously form clusters at the membrane wall and collectively propel the vesicle, turning it into an active superstructure. To further guide the motion of the superstructure, we add discontinuous features to the rigid membrane boundary in the form of a kinked tip, which acts as a steering component to direct the motion of the vesicle. We report that the system’s geometrical and material properties, such as the aspect ratio and Péclet number of the active rods as well as the kink angle and flexibility of the membrane, determine the stacking of active particles close to the kinked confinement and induce a diverse set of dynamical behaviors of the superstructure, including linear and circular motion both in the direction of, and opposite to, the kink. From a systematic study of these various behaviors, we design vesicles with switchable and reversible locomotions by tuning the confinement parameters. The observed phenomena suggest a promising mechanism for particle transportation and could be used as a basic element to navigate active matter through complex and tortuous environments.

     
    more » « less
  2. The digital alchemy framework is an extended ensemble simulation technique that incorporates particle attributes as thermodynamic variables, enabling the inverse design of colloidal particles for desired behavior. Here, we extend the digital alchemy framework for the inverse design of patchy spheres that self-assemble into target crystal structures. To constrain the potentials to non-trivial solutions, we conduct digital alchemy simulations with constant second virial coefficient. We optimize the size, range, and strength of patchy interactions in model triblock Janus spheres to self-assemble the 2D kagome and snub square lattices and the 3D pyrochlore lattice, and demonstrate self-assembly of all three target structures with the designed models. The particles designed for the kagome and snub square lattices assemble into high quality clusters of their target structures, while competition from similar polymorphs lower the yield of the pyrochlore assemblies. We find that the alchemically designed potentials do not always match physical intuition, illustrating the ability of the method to find nontrivial solutions to the optimization problem. We identify a window of second virial coefficients that result in self-assembly of the target structures, analogous to the crystallization slot in protein crystallization. 
    more » « less
  3. Abstract

    Active particle systems can vary greatly from one-component systems of spheres to mixtures of particle shapes at different composition ratios. We investigate computationally the combined effect of anisotropy and stoichiometry on the collective behavior of two-dimensional active colloidal mixtures of polygons. We uncover three emergent phenomena not yet reported in active Brownian particle systems. First, we find that mixtures containing hexagons exhibit micro-phase separation with large grains of hexagonal symmetry. We quantify a measurable, implicit ‘steric attraction’ between the active particles as a result of shape anisotropy and activity. This calculation provides further evidence that implicit interactions in active systems, even without explicit attraction, can lead to an effective preferential attraction between particles. Next, we report stable fluid clusters in mixtures containing one triangle or square component. We attribute the fluidization of the dense cluster to the interplay of cluster destabilizing particles, which introduce grain boundaries and slip planes into the system, causing solid-like clusters to break up into fluid clusters. Third, we show that fluid clusters can coexist with solid clusters within a sparse gas of particles in a steady state of three coexisting phases. Our results highlight the potential for a wide variety of behavior to be accessible to active matter systems and establish a route to control active colloidal systems through simple parameter designs.

     
    more » « less
  4. Abstract

    Synthesizing patchy particles with predictive control over patch size, shape, placement and number has been highly sought-after for nanoparticle assembly research, but is fraught with challenges. Here we show that polymers can be designed to selectively adsorb onto nanoparticle surfaces already partially coated by other chains to drive the formation of patchy nanoparticles with broken symmetry. In our model system of triangular gold nanoparticles and polystyrene-b-polyacrylic acid patch, single- and double-patch nanoparticles are produced at high yield. These asymmetric single-patch nanoparticles are shown to assemble into self-limited patch‒patch connected bowties exhibiting intriguing plasmonic properties. To unveil the mechanism of symmetry-breaking patch formation, we develop a theory that accurately predicts our experimental observations at all scales—from patch patterning on nanoparticles, to the size/shape of the patches, to the particle assemblies driven by patch‒patch interactions. Both the experimental strategy and theoretical prediction extend to nanoparticles of other shapes such as octahedra and bipyramids. Our work provides an approach to leverage polymer interactions with nanoscale curved surfaces for asymmetric grafting in nanomaterials engineering.

     
    more » « less
  5. null (Ed.)
    Entropically driven self-assembly of hard anisotropic particles, where particle shape gives rise to emergent valencies, provides a useful perspective for the design of nanoparticle and colloidal systems. Hard particles self-assemble into a rich variety of crystal structures, ranging in complexity from simple close-packed structures to structures with 432 particles in the unit cell. Entropic crystallization of open structures, however, is missing from this landscape. Here, we report the self-assembly of a two-dimensional binary mixture of hard particles into an open host–guest structure, where nonconvex, triangular host particles form a honeycomb lattice that encapsulates smaller guest particles. Notably, this open structure forms in the absence of enthalpic interactions by effectively splitting the structure into low- and high-entropy sublattices. This is the first such structure to be reported in a two-dimensional athermal system. We discuss the observed compartmentalization of entropy in this system, and show that the effect of the size of the guest particle on the stability of the structure gives rise to a reentrant phase behavior. This reentrance suggests the possibility for a reconfigurable colloidal material, and we provide a proof-of-concept by showing the assembly behavior while changing the size of the guest particles in situ . Our findings provide a strategy for designing open colloidal crystals, as well as binary systems that exhibit co-crystallization, which have been elusive thus far. 
    more » « less
  6. null (Ed.)
    Quasicrystals have been discovered in a variety of materials ranging from metals to polymers. Yet, why and how they form is incompletely understood. In situ transmission electron microscopy of alloy quasicrystal formation in metals suggests an error-and-repair mechanism, whereby quasiperiodic crystals grow imperfectly with phason strain present, and only perfect themselves later into a high-quality quasicrystal with negligible phason strain. The growth mechanism has not been investigated for other types of quasicrystals, such as dendrimeric, polymeric, or colloidal quasicrystals. Soft-matter quasicrystals typically result from entropic, rather than energetic, interactions, and are not usually grown (either in laboratories or in silico ) into large-volume quasicrystals. Consequently, it is unknown whether soft-matter quasicrystals form with the high degree of structural quality found in metal alloy quasicrystals. Here, we investigate the entropically driven growth of colloidal dodecagonal quasicrystals (DQCs) via computer simulation of systems of hard tetrahedra, which are simple models for anisotropic colloidal particles that form a quasicrystal. Using a pattern recognition algorithm applied to particle trajectories during DQC growth, we analyze phason strain to follow the evolution of quasiperiodic order. As in alloys, we observe high structural quality; DQCs with low phason strain crystallize directly from the melt and only require minimal further reduction of phason strain. We also observe transformation from a denser approximant to the DQC via continuous phason strain relaxation. Our results demonstrate that soft-matter quasicrystals dominated by entropy can be thermodynamically stable and grown with high structural quality––just like their alloy quasicrystal counterparts. 
    more » « less
  7. Abstract

    Quasicrystals exhibit long-range order but lack translational symmetry. When grown as single crystals, they possess distinctive and unusual properties owing to the absence of grain boundaries. Unfortunately, conventional methods such as bulk crystal growth or thin film deposition only allow us to synthesize either polycrystalline quasicrystals or quasicrystals that are at most a few centimeters in size. Here, we reveal through real-time and 3D imaging the formation of a single decagonal quasicrystal arising from a hard collision between multiple growing quasicrystals in an Al-Co-Ni liquid. Through corresponding molecular dynamics simulations, we examine the underlying kinetics of quasicrystal coalescence and investigate the effects of initial misorientation between the growing quasicrystalline grains on the formation of grain boundaries. At small misorientation, coalescence occurs following rigid rotation that is facilitated by phasons. Our joint experimental-computational discovery paves the way toward fabrication of single, large-scale quasicrystals for novel applications.

     
    more » « less