skip to main content


Search for: All records

Creators/Authors contains: "Goehring, Brent M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Pine Island Glacier, West Antarctica, is the largest Antarctic contributor to global sea-level rise and is vulnerable to rapid retreat, yet our knowledge of its deglacial history since the Last Glacial Maximum is based largely on marine sediments that record a retreat history ending in the early Holocene. Using a suite of 10Be exposure ages from onshore glacial deposits directly adjacent to Pine Island Glacier, we show that this major glacier thinned rapidly in the early to mid-Holocene. Our results indicate that Pine Island Glacier was at least 690 m thicker than present prior to ca. 8 ka. We infer that the rapid thinning detected at the site farthest downstream records the arrival and stabilization of the retreating grounding line at that site by 8–6 ka. By combining our exposure ages and the marine record, we extend knowledge of Pine Island Glacier retreat both spatially and temporally: to 50 km from the modern grounding line and to the mid-Holocene, providing a data set that is important for future numerical ice-sheet model validation.

     
    more » « less
    Free, publicly-accessible full text available August 17, 2024
  2. Abstract. Over the last century, northwestern Canada experienced some of the highest rates of tropospheric warming globally, which caused glaciers in the region to rapidly retreat. Our study seeks to extend the record of glacier fluctuations and assess climate drivers prior to the instrumental record in the Mackenzie and Selwyn mountains of northwestern Canada. We collected 27 10Be surface exposure ages across nine cirque and valley glacier moraines to constrain the timing of their emplacement. Cirque and valley glaciers in this region reached their greatest Holocene extents in the latter half of the Little Ice Age (1600–1850 CE). Four erratic boulders, 10–250 m distal from late Holocene moraines, yielded 10Be exposure ages of 10.9–11.6 ka, demonstrating that by ca. 11 ka, alpine glaciers were no more extensive than during the last several hundred years. Estimated temperature change obtained through reconstruction of equilibrium line altitudes shows that since ca. 1850 CE, mean annual temperatures have risen 0.2–2.3 ∘C. We use our glacier chronology and the Open Global Glacier Model (OGGM) to estimate that from 1000 CE, glaciers in this region reached a maximum total volume of 34–38 km3 between 1765 and 1855 CE and had lost nearly half their ice volume by 2019 CE. OGGM was unable to produce modeled glacier lengths that match the timing or magnitude of the maximum glacier extent indicated by the 10Be chronology. However, when applied to the entire Mackenzie and Selwyn mountain region, past millennium OGGM simulations using the Max Planck Institute Earth System Model (MPI-ESM) and the Community Climate System Model 4 (CCSM4) yield late Holocene glacier volume change temporally consistent with our moraine and remote sensing record, while the Meteorological Research Institute Earth System Model 2 (MRI-ESM2) and the Model for Interdisciplinary Research on Climate (MIROC) fail to produce modeled glacier change consistent with our glacier chronology. Finally, OGGM forced by future climate projections under varying greenhouse gas emission scenarios predicts 85 % to over 97 % glacier volume loss by the end of the 21st century. The loss of glaciers from this region will have profound impacts on local ecosystems and communities that rely on meltwater from glacierized catchments.

     
    more » « less
  3. null (Ed.)
  4. Abstract

    The rapidly retreating Thwaites and Pine Island glaciers together dominate present-day ice loss from the West Antarctic Ice Sheet and are implicated in runaway deglaciation scenarios. Knowledge of whether these glaciers were substantially smaller in the mid-Holocene and subsequently recovered to their present extents is important for assessing whether current ice recession is irreversible. Here we reconstruct relative sea-level change from radiocarbon-dated raised beaches at sites immediately seawards of these glaciers, allowing us to examine the response of the earth to loading and unloading of ice in the Amundsen Sea region. We find that relative sea level fell steadily over the past 5.5 kyr without rate changes that would characterize large-scale ice re-expansion. Moreover, current bedrock uplift rates are an order of magnitude greater than the rate of long-term relative sea-level fall, suggesting a change in regional crustal unloading and implying that the present deglaciation may be unprecedented in the past ~5.5 kyr. While we cannot preclude minor grounding-line fluctuations, our data are explained most easily by early Holocene deglaciation followed by relatively stable ice positions until recent times and imply that Thwaites and Pine Island glaciers have not been substantially smaller than present during the past 5.5 kyr.

     
    more » « less
  5. Abstract. Widespread existing geological records from above the modern ice sheet surface and outboard of the current ice margin show that the Antarctic IceSheet (AIS) was much more extensive at the Last Glacial Maximum (∼ 20 ka) than at present. However, whether it was ever smaller thanpresent during the last few millennia, and (if so) by how much, is known only for a few locations because direct evidence lies within or beneath theice sheet, which is challenging to access. Here, we describe how retreat and readvance (henceforth “readvance”) of AIS grounding lines during theHolocene could be detected and quantified using subglacial bedrock, subglacial sediments, marine sediment cores, relative sea-level (RSL) records,geodetic observations, radar data, and ice cores. Of these, only subglacial bedrock and subglacial sediments can provide direct evidence forreadvance. Marine archives are of limited utility because readvance commonly covers evidence of earlier retreat. Nevertheless, stratigraphictransitions documenting change in environment may provide support for direct evidence from subglacial records, as can the presence of transgressionsin RSL records, and isostatic subsidence. With independent age control, ice structure revealed by radar can be used to infer past changes in iceflow and geometry, and therefore potential readvance. Since ice cores capture changes in surface mass balance, elevation, and atmosphericand oceanic circulation that are known to drive grounding line migration, they also have potential for identifying readvance. A multidisciplinaryapproach is likely to provide the strongest evidence for or against a smaller-than-present AIS in the Holocene. 
    more » « less
  6. null (Ed.)
  7. null (Ed.)
    Abstract Tropical glaciers have retreated alongside warming temperatures over the past century, yet the way in which these trends fit into a long-term geological context is largely unclear. Here, we present reconstructions of Holocene glacier extents relative to today from the Quelccaya ice cap (Peru) and the Rwenzori Mountains (Uganda) based on measurements of in situ14C and 10Be from recently exposed bedrock. Ice-extent histories are similar at both sites and suggest that ice was generally smaller than today during the first half of the Holocene and larger than today for most, if not all, of the past several millennia. The similar glaciation history in South America and Africa suggests that large-scale warming followed by cooling of the tropics during the late Holocene primarily drove ice extent, rather than regional changes in precipitation. Our results also imply that recent tropical ice retreat is anomalous in a multimillennial context. 
    more » « less