skip to main content


Search for: All records

Creators/Authors contains: "Gomez, Sebastian"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We present an extensive Hubble Space Telescope rest-frame UV imaging study of the locations of Type I superluminous supernovae (SLSNe) within their host galaxies. The sample includes 65 SLSNe with detected host galaxies in the redshift rangez≈ 0.05–2. Using precise astrometric matching with SN images, we determine the distributions of the physical and host-normalized offsets relative to the host centers, as well as the fractional flux distribution relative to the underlying UV light distributions. We find that the host-normalized offsets of SLSNe roughly track an exponential disk profile, but exhibit an overabundance of sources with large offsets of 1.5–4 times their hosts' half-light radii. The SLSNe normalized offsets are systematically larger than those of long gamma-ray bursts (LGRBs), and even Type Ib/c and Type II SNe. Furthermore, we find from a Monte Carlo procedure that about378+6%of SLSNe occur in the dimmest regions of their host galaxies, with a median fractional flux value of 0.16, in stark contrast to LGRBs and Type Ib/c and Type II SNe. We do not detect any significant trends in the locations of SLSNe as a function of redshift, or as a function of explosion and magnetar engine parameters inferred from modeling of their optical light curves. The significant difference in SLSN locations compared to LGRBs (and normal core-collapse SNe) suggests that at least some of their progenitors follow a different evolutionary path. We speculate that SLSNe arise from massive runaway stars from disrupted binary systems, with velocities of ∼102km s−1.

     
    more » « less
  2. ABSTRACT

    A key assumption in quasar absorption-line studies of the circumgalactic medium (CGM) is that each absorption component maps to a spatially isolated ‘cloud’ structure that has single valued properties (e.g. density, temperature, metallicity). We aim to assess and quantify the degree of accuracy underlying this assumption. We used adaptive mesh refinement hydrodynamic cosmological simulations of two z = 1 dwarf galaxies and generated synthetic quasar absorption-line spectra of their CGM. For the Si ii λ1260 transition, and the C iv λλ1548, 1550 and O vi λλ1031, 1037 fine-structure doublets, we objectively determined which gas cells along a line of sight (LOS) contribute to detected absorption. We implemented a fast, efficient, and objective method to define individual absorption components in each absorption profile. For each absorption component, we quantified the spatial distribution of the absorbing gas. We studied a total of 1302 absorption systems containing a total of 7755 absorption components. 48  per cent of Si ii, 68  per cent of C iv, and 72  per cent of O vi absorption components arise from two or more spatially isolated ‘cloud’ structures along the LOS. Spatially isolated ‘cloud’ structures were most likely to have cloud–cloud LOS separations of 0.03Rvir (1.3 kpc), 0.11Rvir (4.8 kpc), and 0.13Rvir (5.6 kpc) for Si ii, C iv, and O vi, respectively. There can be very little overlap between multiphase gas structures giving rise to absorption components. If our results reflect the underlying reality of how absorption lines record CGM gas, they place tension on current observational analysis methods as they suggest that component-by-component absorption-line formation is more complex than is assumed and applied for chemical-ionization modelling.

     
    more » « less
  3. Abstract

    In 2019 November, we began operating Finding Luminous and Exotic Extragalactic Transients (FLEET), a machine-learning algorithm designed to photometrically identify Type I superluminous supernovae (SLSNe) in transient alert streams. Through this observational campaign, we spectroscopically classified 21 of the 50 SLSNe identified worldwide between 2019 November and 2022 January. Based on our original algorithm, we anticipated that FLEET would achieve a purity of about 50% for transients with a probability of being an SLSN,P(SLSN-I) > 0.5; the true on-sky purity we obtained is closer to 80%. Similarly, we anticipated FLEET could reach a completeness of about 30%, and we indeed measure an upper limit on the completeness of ≲33%. Here we present FLEET 2.0, an updated version of FLEET trained on 4780 transients (almost three times more than FLEET 1.0). FLEET 2.0 has a similar predicted purity to FLEET 1.0 but outperforms FLEET 1.0 in terms of completeness, which is now closer to ≈40% for transients withP(SLSN-I) > 0.5. Additionally, we explore the possible systematics that might arise from the use of FLEET for target selection. We find that the population of SLSNe recovered by FLEET is mostly indistinguishable from the overall SLSN population in terms of physical and most observational parameters. We provide FLEET as an open source package on GitHub: https://github.com/gmzsebastian/FLEET.

     
    more » « less
  4. Abstract

    We present an expansion of FLEET, a machine-learning algorithm optimized to select transients that are most likely tidal disruption events (TDEs). FLEET is based on a random forest algorithm trained on both the light curves and host galaxy information of 4779 spectroscopically classified transients. We find that for transients with a probability of being a TDE,P(TDE) > 0.5, we can successfully recover TDEs with ≈40% completeness and ≈30% purity when using their first 20 days of photometry or a similar completeness and ≈50% purity when including 40 days of photometry, an improvement of almost 2 orders of magnitude compared to random selection. Alternatively, we can recover TDEs with a maximum purity of ≈80% and a completeness of ≈30% when considering only transients withP(TDE) > 0.8. We explore the use of FLEET for future time-domain surveys such as the Legacy Survey of Space and Time on the Vera C. Rubin Observatory (Rubin) and the Nancy Grace Roman Space Telescope (Roman). We estimate that ∼104well-observed TDEs could be discovered every year by Rubin and ∼200 TDEs by Roman. Finally, we run FLEET on the TDEs from our Rubin survey simulation and find that we can recover ∼30% of them at redshiftz< 0.5 withP(TDE) > 0.5, or ∼3000 TDEs yr–1that FLEET could uncover from the Rubin stream. We have demonstrated that we will be able to run FLEET on Rubin photometry as soon as this survey begins. FLEET is provided as an open source package on GitHub: https://github.com/gmzsebastian/FLEET.

     
    more » « less
  5. Abstract

    We present the discovery of the Type II supernova SN 2023ixf in M101 and follow-up photometric and spectroscopic observations, respectively, in the first month and week of its evolution. Our discovery was made within a day of estimated first light, and the following light curve is characterized by a rapid rise (≈5 days) to a luminous peak (MV≈ − 18.2 mag) and plateau (MV≈ − 17.6 mag) extending to 30 days with a fast decline rate of ≈0.03 mag day−1. During the rising phase,UVcolor shows blueward evolution, followed by redward evolution in the plateau phase. Prominent flash features of hydrogen, helium, carbon, and nitrogen dominate the spectra up to ≈5 days after first light, with a transition to a higher ionization state in the first ≈2 days. Both theUVcolor and flash ionization states suggest a rise in the temperature, indicative of a delayed shock breakout inside dense circumstellar material (CSM). From the timescales of CSM interaction, we estimate its compact radial extent of ∼(3–7) × 1014cm. We then construct numerical light-curve models based on both continuous and eruptive mass-loss scenarios shortly before explosion. For the continuous mass-loss scenario, we infer a range of mass-loss history with 0.1–1.0Myr−1in the final 2−1 yr before explosion, with a potentially decreasing mass loss of 0.01–0.1Myr−1in ∼0.7–0.4 yr toward the explosion. For the eruptive mass-loss scenario, we favor eruptions releasing 0.3–1Mof the envelope at about a year before explosion, which result in CSM with mass and extent similar to the continuous scenario. We discuss the implications of the available multiwavelength constraints obtained thus far on the progenitor candidate and SN 2023ixf to our variable CSM models.

     
    more » « less
    Free, publicly-accessible full text available September 1, 2024
  6. Abstract

    Stripped-envelope core-collapse supernovae can be divided into two broad classes: the common Type Ib/c supernovae (SNe Ib/c), powered by the radioactive decay of56Ni, and the rare superluminous supernovae (SLSNe), most likely powered by the spin-down of a magnetar central engine. Up to now, the intermediate regime between these two populations has remained mostly unexplored. Here, we present a comprehensive study of 40luminous supernovae(LSNe), SNe with peak magnitudes ofMr= −19 to −20 mag, bound by SLSNe on the bright end and by SNe Ib/c on the dim end. Spectroscopically, LSNe appear to form a continuum between Type Ic SNe and SLSNe. Given their intermediate nature, we model the light curves of all LSNe using a combined magnetar plus radioactive decay model and find that they are indeed intermediate, not only in terms of their peak luminosity and spectra, but also in their rise times, power sources, and physical parameters. We subclassify LSNe into distinct groups that are either as fast evolving as SNe Ib/c or as slow evolving as SLSNe, and appear to be either radioactively or magnetar powered, respectively. Our findings indicate that LSNe are powered by either an overabundant production of56Ni or by weak magnetar engines, and may serve as the missing link between the two populations.

     
    more » « less
  7. ABSTRACT

    We present new spectroscopic and photometric follow-up observations of the known sample of extreme coronal line-emitting galaxies (ECLEs) identified in the Sloan Digital Sky Survey (SDSS). With these new data, observations of the ECLE sample now span a period of two decades following their initial SDSS detections. We confirm the non-recurrence of the iron coronal line signatures in five of the seven objects, further supporting their identification as the transient light echoes of tidal disruption events (TDEs). Photometric observations of these objects in optical bands show little overall evolution. In contrast, mid-infrared (MIR) observations show ongoing long-term declines consistent with power-law decay. The remaining two objects had been classified as active galactic nuclei (AGNs) with unusually strong coronal lines rather than being TDE related, given the persistence of the coronal lines in earlier follow-up spectra. We confirm this classification, with our spectra continuing to show the presence of strong, unchanged coronal line features and AGN-like MIR colours and behaviour. We have constructed spectral templates of both subtypes of ECLE to aid in distinguishing the likely origin of newly discovered ECLEs. We highlight the need for higher cadence, and more rapid, follow-up observations of such objects to better constrain their properties and evolution. We also discuss the relationships between ECLEs, TDEs, and other identified transients having significant MIR variability.

     
    more » « less
  8. Abstract

    Recent work has revealed that the light curves of hydrogen-poor (Type I) superluminous supernovae (SLSNe), thought to be powered by magnetar central engines, do not always follow the smooth decline predicted by a simple magnetar spin-down model. Here we present the first systematic study of the prevalence and properties of “bumps” in the post-peak light curves of 34 SLSNe. We find that the majority (44%–76%) of events cannot be explained by a smooth magnetar model alone. We do not find any difference in supernova properties between events with and without bumps. By fitting a simple Gaussian model to the light-curve residuals, we characterize each bump with an amplitude, temperature, phase, and duration. We find that most bumps correspond with an increase in the photospheric temperature of the ejecta, although we do not see drastic changes in spectroscopic features during the bump. We also find a moderate correlation (ρ≈ 0.5;p≈ 0.01) between the phase of the bumps and the rise time, implying that such bumps tend to happen at a certain “evolutionary phase,” (3.7 ± 1.4)trise. Most bumps are consistent with having diffused from a central source of variable luminosity, although sources further out in the ejecta are not excluded. With this evidence, we explore whether the cause of these bumps is intrinsic to the supernova (e.g., a variable central engine) or extrinsic (e.g., circumstellar interaction). Both cases are plausible, requiring low-level variability in the magnetar input luminosity, small decreases in the ejecta opacity, or a thin circumstellar shell or disk.

     
    more » « less
  9. Abstract

    We present high-cadence ultraviolet through near-infrared observations of the Type Ia supernova (SN Ia) 2023bee atD= 32 ± 3 Mpc, finding excess flux in the first days after explosion, particularly in our 10 minutes cadence TESS light curve and Swift UV data. Compared to a few other normal SNe Ia with early excess flux, the excess flux in SN 2023bee is redder in the UV and less luminous. We present optical spectra of SN 2023bee, including two spectra during the period where the flux excess is dominant. At this time, the spectra are similar to those of other SNe Ia but with weaker Siii, Cii,and Caiiabsorption lines, perhaps because the excess flux creates a stronger continuum. We compare the data to several theoretical models on the origin of early excess flux in SNe Ia. Interaction with either the companion star or close-in circumstellar material is expected to produce a faster evolution than observed. Radioactive material in the outer layers of the ejecta, either from double detonation explosion or from a56Ni clump near the surface, cannot fully reproduce the evolution either, likely due to the sensitivity of early UV observable to the treatment of the outer part of ejecta in simulation. We conclude that no current model can adequately explain the full set of observations. We find that a relatively large fraction of nearby, bright SNe Ia with high-cadence observations have some amount of excess flux within a few days of explosion. Considering potential asymmetric emission, the physical cause of this excess flux may be ubiquitous in normal SNe Ia.

     
    more » « less
  10. ABSTRACT

    The Reionization Cluster Survey imaged 41 galaxy clusters with the Hubble Space Telescope (HST), in order to detect lensed and high-redshift galaxies. Each cluster was imaged to about 26.5 AB mag in three optical and four near-infrared bands, taken in two distinct visits separated by varying time intervals. We make use of the multiple near-infrared epochs to search for transient sources in the cluster fields, with the primary motivation of building statistics for bright caustic crossing events in gravitational arcs. Over the whole sample, we do not find any significant (≳5σ) caustic crossing events, in line with expectations from semi-analytical calculations but in contrast to what may be naively expected from previous detections of some bright events or from deeper transient surveys that do find high rates of such events. Nevertheless, we find six prominent supernova (SN) candidates over the 41 fields: three of them were previously reported and three are new ones reported here for the first time. Out of the six candidates, four are likely core-collapse SNe – three in cluster galaxies, and among which only one was known before, and one slightly behind the cluster at z ∼ 0.6–0.7. The other two are likely Ia – both of them previously known, one probably in a cluster galaxy and one behind it at z ≃ 2. Our study supplies empirical bounds for the rate of caustic crossing events in galaxy cluster fields to typical HST magnitudes, and lays the groundwork for a future SN rate study.

     
    more » « less