skip to main content


Search for: All records

Creators/Authors contains: "Gong, Xiong"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Misfolding and aggregation of amyloid peptides are critical pathological events in numerous protein misfolding diseases (PMDs), such as Alzheimer's disease (AD), type II diabetes (T2D), and medullary thyroid carcinoma (MTC). While developing effective amyloid detectors and inhibitors to probe and prevent amyloid aggregation is a crucial diagnostic and therapeutic strategy for treating debilitating diseases, it is important to recognize that amyloid detection and amyloid prevention are two distinct strategies for developing pharmaceutical drugs. Here, we reported novel fluorescent BO21 as a versatile “dual-function, multi-target” amyloid probe and inhibitor for detecting and preventing amyloid aggregates of different sequences (Aβ, hIAPP, or hCT) and sizes (monomers, oligomers, or fibrils). As an amyloid probe, BO21 demonstrated a higher sensitivity and binding affinity to oligomeric and fibrillar amyloids compared to ThT, resulting in up to 18–39 fold fluorescence enhancements. As an amyloid inhibitor, BO21 also demonstrated its strong amyloid inhibition property by effectively preventing amyloid aggregation, disaggregating preformed amyloid fibrils, and reducing amyloid-induced cytotoxicity. The findings of this study offer a new perspective for the discovery of dual-functional amyloid probes and inhibitors, which have the potential to greatly expand the diagnostic and therapeutic treatments available for PMDs. 
    more » « less
    Free, publicly-accessible full text available November 9, 2024
  2. Abstract

    The development and understanding of antifreezing hydrogels are crucial both in principle and practice for the design and delivery of new materials. The current antifreezing mechanisms in hydrogels are almost exclusively derived from their incorporation of antifreezing additives, rather than from the inherent properties of the polymers themselves. Moreover, developing a computational model for the independent yet interconnected double-network (DN) structures in hydrogels has proven to be an exceptionally difficult task. Here, we develop a multiscale simulation platform, integrating ‘random walk reactive polymerization’ (RWRP) with molecular dynamics (MD) simulations, to computationally construct a physically-chemically linked PVA/PHEAA DN hydrogels from monomers that mimic a radical polymerization and to investigate water structures, dynamics, and interactions confined in PVA/PHEAA hydrogels with various water contents and temperatures, aiming to uncover antifreezing mechanism at atomic levels. Collective simulation results indicate that the antifreezing property of PVA/PHEAA hydrogels arises from a combination of intrinsic, strong water-binding networks and crosslinkers and tightly crosslinked and interpenetrating double-network structures, both of which enhance polymer-water interactions for competitively inhibiting ice nucleation and growth. These computational findings provide atomic-level insights into the interplay between polymers and water molecules in hydrogels, which may determine their resistance to freezing.

     
    more » « less
  3. Since hIAPP (human islet amyloid polypeptide) aggregation and microbial infection are recognized as significant risk factors that contribute to the pathogenesis of type II diabetes (T2D), targeting these catastrophic processes simultaneously may have a greater impact on the prevention and treatment of T2D. Different from the well-studied hIAPP inhibitors, here we propose and demonstrate a repurposing strategy for an antimicrobial peptide, aurein, which can simultaneously modulate hIAPP aggregation and inhibit microbial infection. Collective data from protein, cell, and bacteria assays revealed multiple functions of aurein including (i) promotion of hIAPP aggregation at a low molar ratio of aurein:hIAPP = 0.5 : 1–2 : 1, (ii) reduction of hIAPP-induced cytotoxicity in RIN-m5F cells, and (iii) preservation of original antimicrobial activity against E. coli., S.A., and S.E. strains in the presence of hIAPP. These functions of aurein are mainly derived from its strong binding to different hIAPP seeds through conformationally similar β-sheet association. Our study provides a promising avenue for the repurposing of antimicrobial peptides (such as aurein) as amyloid modulators for blocking at least two pathological pathways in T2D. 
    more » « less
    Free, publicly-accessible full text available August 24, 2024
  4. Free, publicly-accessible full text available July 1, 2024
  5. Free, publicly-accessible full text available May 1, 2024
  6. Amyloid formation and microbial infection are the two common pathological causes of neurogenerative diseases, including Alzheimer's disease (AD), type II diabetes (T2D), and medullary thyroid carcinoma (MTC). While significant efforts have been made to develop different prevention strategies and preclinical hits for these diseases, conventional design strategies of amyloid inhibitors are mostly limited to either a single prevention mechanism (amyloid cascade vs. microbial infection) or a single amyloid protein (Aβ, hIAPP, or hCT), which has prevented the launch of any successful drug on the market. Here, we propose and demonstrate a new “anti-amyloid and anti-bacteria” strategy to repurpose two intestinal defensins, human α-defensin 6 (HD-6) and human β-defensin 1 (HBD-1), as multiple-target, dual-function, amyloid inhibitors. Both HD-6 and HBD-1 can cross-seed with three amyloid peptides, Aβ (associated with AD), hIAPP (associated with T2D), and hCT (associated with MTC), to prevent their aggregation towards amyloid fibrils from monomers and oligomers, rescue SH-SY5Y and RIN-m5F cells from amyloid-induced cytotoxicity, and retain their original antimicrobial activity against four common bacterial strains at sub-stoichiometric concentrations. Such sequence-independent anti-amyloid and anti-bacterial functions of intestinal defensins mainly stem from their cross-interactions with amyloid proteins through amyloid-like mimicry of β-sheet associations. In a broader view, this work provides a new out-of-the-box thinking to search and repurpose a huge source of antimicrobial peptides as amyloid inhibitors, allowing the blocking of the two interlinked pathological pathways and bidirectional communication between the central nervous system and intestines via the gut–brain axis associated with neurodegenerative diseases. 
    more » « less