skip to main content


Search for: All records

Creators/Authors contains: "Gourdji, K."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    Fast radio bursts (FRBs) are transient radio signals of extragalactic origins that are subjected to propagation effects such as dispersion and scattering. It follows then that these signals hold information regarding the medium they have traversed and are hence useful as cosmological probes of the Universe. Recently, FRBs were used to make an independent measure of the Hubble constant H0, promising to resolve the Hubble tension given a sufficient number of detected FRBs. Such cosmological studies are dependent on FRB population statistics, cosmological parameters, and detection biases, and thus it is important to accurately characterize each of these. In this work, we empirically characterize the sensitivity of the Fast Real-time Engine for Dedispersing Amplitudes (FREDDA) which is the current detection system for the Australian Square Kilometre Array Pathfinder (ASKAP). We coherently redisperse high-time resolution data of 13 ASKAP-detected FRBs and inject them into FREDDA to determine the recovered signal-to-noise ratios as a function of dispersion measure. We find that for 11 of the 13 FRBs, these results are consistent with injecting idealized pulses. Approximating this sensitivity function with theoretical predictions results in a systematic error of 0.3 km s−1 Mpc−1 on H0 when it is the only free parameter. Allowing additional parameters to vary could increase this systematic by up to $\sim 1\,$ km s−1 Mpc−1. We estimate that this systematic will not be relevant until ∼400 localized FRBs have been detected, but will likely be significant in resolving the Hubble tension.

     
    more » « less
  2. ABSTRACT

    We present 849 new bursts from FRB 20121102A detected with the 305-m Arecibo Telescope. Observations were conducted as part of our regular campaign to monitor activity and evolution of burst properties. The 10 reported observations were carried out between 1150 and $1730\, {\rm MHz}$ and fall in the active period around 2018 November. All bursts were dedispersed at the same dispersion measure and are consistent with a single value of $(562.4 \pm 0.1)\, {\rm pc\, cm^{-3}}$. The rate varies between 0 bursts and 218 ± 16 bursts per hour, the highest rate observed to date. The times between consecutive bursts show a bimodal distribution. We find that a Poisson process with varying rate best describes arrival times with separations ${\gt}{0.1\, {\rm s}}$. Clustering on time-scales of $22\, {\rm ms}$ reflects a characteristic time-scale of the source and possibly the emission mechanism. We analyse the spectro-temporal structure of the bursts by fitting 2D Gaussians with a temporal drift to each sub-burst in the dynamic spectra. We find a linear relationship between the sub-burst’s drift and its duration. At the same time, the drifts are consistent with coming from the sad-trombone effect. This has not been predicted by current models. The energy distribution shows an excess of high-energy bursts and is insufficiently modelled by a single power law even within single observations. We find long-term changes in the energy distribution, the average spectrum, and the sad-trombone drift, compared to earlier and later published observations. Despite the large burst rate, we find no strict short-term periodicity.

     
    more » « less