skip to main content


Search for: All records

Creators/Authors contains: "Gourevitch, Jesse D."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Climate change impacts threaten the stability of the US housing market. In response to growing concerns that increasing costs of flooding are not fully captured in property values, we quantify the magnitude of unpriced flood risk in the housing market by comparing the empirical and economically efficient prices for properties at risk. We find that residential properties exposed to flood risk are overvalued by US$121–US$237 billion, depending on the discount rate. In general, highly overvalued properties are concentrated in counties along the coast with no flood risk disclosure laws and where there is less concern about climate change. Low-income households are at greater risk of losing home equity from price deflation, and municipalities that are heavily reliant on property taxes for revenue are vulnerable to budgetary shortfalls. The consequences of these financial risks will depend on policy choices that influence who bears the costs of climate change.

     
    more » « less
  2. Abstract

    Addressing how ecosystem services (ES) are distributed among groups of people is critical for making conservation and environmental policy-making more equitable. Here, we evaluate the distribution and equity of changes in ES benefits across demographic and socioeconomic groups in the United States (US) between 2020 and 2100. Specifically, we use land cover and population projections to model potential shifts in the supply, demand, and benefits of the following ES: provision of clean air, protection against a vector-borne disease (West Nile virus), and crop pollination. Across the US, changes in ES benefits are unevenly distributed among socioeconomic and demographic groups and among rural and urban communities, but are relatively uniform across geographic regions. In general, non-white, lower-income, and urban populations disproportionately bear the burden of declines in ES benefits. This is largely driven by the conversion of forests and wetlands to cropland and urban land cover in counties where these populations are expected to grow. In these locations, targeted land use policy interventions are required to avoid exacerbating inequalities already present in the US.

     
    more » « less
  3. Abstract

    Excessive phosphorus (P) export to aquatic ecosystems can lead to impaired water quality. There is a growing interest among watershed managers in using restored wetlands to retain P from agricultural landscapes and improve water quality. We develop a novel framework for prioritizing wetland restoration at a regional scale. The framework uses an ecosystem service model and an optimization algorithm that maximizes P reduction for given levels of restoration cost. Applying our framework in the Lake Champlain Basin, we find that wetland restoration can reduce P export by 2.6% for a budget of $50 M and 5.1% for a budget of $200 M. Sensitivity analysis shows that using finer spatial resolution data for P sources results in twice the P reduction benefits at a similar cost by capturing hot-spots on the landscape. We identify 890 wetlands that occur in more than 75% of all optimal scenarios and represent priorities for restoration. Most of these wetlands are smaller than 7 ha with contributing area less than 100 ha and are located within 200 m of streams. Our approach provides a simple yet robust tool for targeting restoration efforts at regional scales and is readily adaptable to other restoration strategies.

     
    more » « less
  4. Abstract

    The combined impacts of climate change and ecological degradation are expected to worsen inequality within society. These dynamics are exemplified by increases in flood risk globally. In general, low‐income and socially vulnerable populations disproportionately bear the cost of flood damages. Climate change is expected to increase the number of people exposed to fluvial flood risk and cause greater property damages. Floodplain restoration has the potential to mitigate these impacts, but the distribution of future risks among different types of property owners under these altered conditions is often unknown.

    Here, we develop a simple probabilistic approach for estimating flood risk to property owners under floodplain restoration and climate change scenarios for a range of flood recurrence intervals. We apply this approach in the Vermont, USA portion of the Lake Champlain Basin.

    Over a 100‐year time horizon, we estimate that the value of property damages caused by flood inundation is approximately $2.13 billion under the baseline scenario. Climate change is expected to increase damages to $5.29 billion, a 148% increase; however, floodplain restoration has the potential to reduce these impacts by approximately 20%.

    For all scenarios, a larger proportion of lower‐value properties, specifically mobile homes, face greater flood risk compared to higher‐value properties. Climate change is expected to cost higher‐value properties and commercial properties more than other types of properties, but these same groups are also expected to benefit most from floodplain restoration.

    In general, these results raise concern that those least able to prepare for and recover from flood damages are also the people who face the greatest threats. In response, public policy interventions must consider not only where flood risk is most severe, but also the vulnerability of people exposed to such risk.

    Read the freePlain Language Summaryfor this article on the Journal blog.

     
    more » « less