skip to main content


Search for: All records

Creators/Authors contains: "Grace, Johnny M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Urgency of Precipitation Intensity-Duration-Frequency (IDF) estimation using the most recent data has grown significantly due to recent intense precipitation and cloud burst circumstances impacting infrastructure caused by climate change. Given the continually available digitized up-to-date, long-term, and fine resolution precipitation dataset from the United States Department of Agriculture Forest Service’s (USDAFS) Experimental Forests and Ranges (EF) rain gauge stations, it is both important and relevant to develop precipitation IDF from onsite dataset (Onsite-IDF) that incorporates the most recent time period, aiding in the design, and planning of forest road-stream crossing structures (RSCS) in headwaters to maintain resilient forest ecosystems. Here we developed Onsite-IDFs for hourly and sub-hourly duration, and 25-yr, 50-yr, and 100-yr design return intervals (RIs) from annual maxima series (AMS) of precipitation intensities (PIs) modeled by applying Generalized Extreme Value (GEV) analysis and L-moment based parameter estimation methodology at six USDAFS EFs and compared them with precipitation IDFs obtained from the National Oceanic and Atmospheric Administration Atlas 14 (NOAA-Atlas14). A regional frequency analysis (RFA) was performed for EFs where data from multiple precipitation gauges are available. NOAA’s station-based precipitation IDFs were estimated for comparison using RFA (NOAA-RFA) at one of the EFs where NOAA-Atlas14 precipitation IDFs are unavailable. Onsite-IDFs were then evaluated against the PIs from NOAA-Atlas14 and NOAA-RFA by comparing their relative differences and storm frequencies. Results show considerable relative differences between the Onsite- and NOAA-Atlas14 (or NOAA-RFA) IDFs at these EFs, some of which are strongly dependent on the storm durations and elevation of precipitation gauges, particularly in steep, forested sites of H. J. Andrews (HJA) and Coweeta Hydrological Laboratory (CHL) EFs. At the higher elevation gauge of HJA EF, NOAA-RFA based precipitation IDFs underestimate PI of 25-yr, 50-yr, and 100-yr RIs by considerable amounts for 12-h and 24-h duration storm events relative to the Onsite-IDFs. At the low-gradient Santee (SAN) EF, the PIs of 3- to 24-h storm events with 100-yr frequency (or RI) from NOAA-Atlas14 gauges are found to be equivalent to PIs of more frequent storm events (25–50-yr RI) as estimated from the onsite dataset. Our results recommend use of the Onsite-IDF estimates for the estimation of design storm peak discharge rates at the higher elevation catchments of HJA, CHL, and SAN EF locations, particularly for longer duration events, where NOAA-based precipitation IDFs underestimate the PIs relative to the Onsite-IDFs. This underscores the importance of long-term high resolution EF data for new applications including ecological restorations and indicates that planning and design teams should use as much local data as possible or account for potential PI inconsistencies or underestimations if local data are unavailable.

     
    more » « less
    Free, publicly-accessible full text available October 1, 2024
  2. The recent decade has witnessed an increase in irrigated acreage in the southeast United States due to the shift in cropping patterns, climatic conditions, and water availability. Peanut, a major legume crop cultivated in Georgia, Southeast United States, has been a staple food in the American household. Regardless of its significant contribution to the global production of peanuts (fourth largest), studies related to local or regional scale water consumption in peanut production and its significant environmental impacts are scarce. Therefore, the present research contributes to the water footprint of peanut crops in eight counties of Georgia and its potential ecological impacts. The impact categories relative to water consumption (water depletion—green and blue water scarcity) and pesticide use (water degradation—potential freshwater ecotoxicity) using crop-specific characterization factors are estimated for the period 2007 to 2017 at the mid-point level. These impacts are transformed into damages to the area of protection in terms of ecosystem quality at the end-point level. This is the first county-wise quantification of the water footprint and its impact assessment using ISO 14046 framework in the southeast United States. The results suggest inter-county differences in water consumption of crops with higher blue water requirements than green and grey water. According to the water footprint analysis of the peanut crop conducted in this study, additional irrigation is recommended in eight Georgia counties. The mid-point level impact assessment owing to water consumption and pesticide application reveals that the potential freshwater ecotoxicity impacts at the planting and growing stages are higher for chemicals with high characterization factors regardless of lower pesticide application rates. Multiple regression analysis indicates blue water, yield, precipitation, maximum surface temperature, and growing degree days are the potential factors influencing freshwater ecotoxicity impacts. Accordingly, a possible impact pathway of freshwater ecotoxicity connecting the inventory flows and the ecosystem quality is defined. This analysis is helpful in the comparative environmental impact assessments for other major crops in Georgia and aids in water resource management decisions. The results from the study could be of great relevance to the southeast United States, as well as other regions with similar climatic zones and land use patterns. The assessment of water use impacts relative to resource availability can assist farmers in determining the timing and layout of crop planting. 
    more » « less