skip to main content


Search for: All records

Creators/Authors contains: "Graft, Josephine"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The ability to monitor mental effort during a task using a wearable sensor may improve productivity for both work and study. The use of the electrodermal activity (EDA) signal for tracking mental effort is an emerging area of research. Through analysis of over 92 h of data collected with the Empatica E4 on a single participant across 91 different activities, we report on the efficacy of using EDA features getting at signal intensity, signal dispersion, and peak intensity for prediction of the participant’s self-reported mental effort. We implemented the logistic regression algorithm as an interpretable machine learning approach and found that features related to signal intensity and peak intensity were most useful for the prediction of whether the participant was in a self-reported high mental effort state; increased signal and peak intensity were indicative of high mental effort. When cross-validated by activity moderate predictive efficacy was achieved (AUC = 0.63, F1 = 0.63, precision = 0.64, recall = 0.63) which was significantly stronger than using the model bias alone. Predicting mental effort using physiological data is a complex problem, and our findings add to research from other contexts showing that EDA may be a promising physiological indicator to use for sensor-based self-monitoring of mental effort throughout the day. Integration of other physiological features related to heart rate, respiration, and circulation may be necessary to obtain more accurate predictions. 
    more » « less
  2. Trackers for activity and physical fitness have become ubiquitous. Although recent work has demonstrated significant relationships between mental effort and physiological data such as skin temperature, heart rate, and electrodermal activity, we have yet to demonstrate their efficacy for the forecasting of mental effort such that a useful mental effort tracker can be developed. Given prior difficulty in extracting relationships between mental effort and physiological responses that are repeatable across individuals, we make the case that fusing self-report measures with physiological data within an internet or smartphone application may provide an effective method for training a useful mental effort tracking system. In this case study, we utilized over 90 h of data from a single participant over the course of a college semester. By fusing the participant’s self-reported mental effort in different activities over the course of the semester with concurrent physiological data collected with the Empatica E4 wearable sensor, we explored questions around how much data were needed to train such a device, and which types of machine-learning algorithms worked best. We concluded that although baseline models such as logistic regression and Markov models provided useful explanatory information on how the student’s physiology changed with mental effort, deep-learning algorithms were able to generate accurate predictions using the first 28 h of data for training. A system that combines long short-term memory and convolutional neural networks is recommended in order to generate smooth predictions while also being able to capture transitions in mental effort when they occur in the individual using the device. 
    more » « less
  3. null (Ed.)
    Automated tracking of physical fitness has sparked a health revolution by allowing individuals to track their own physical activity and health in real time. This concept is beginning to be applied to tracking of cognitive load. It is well known that activity in the brain can be measured through changes in the body’s physiology, but current real-time measures tend to be unimodal and invasive. We therefore propose the concept of a wearable educational fitness (EduFit) tracker. We use machine learning with physiological data to understand how to develop a wearable device that tracks cognitive load accurately in real time. In an initial study, we found that body temperature, skin conductance, and heart rate were able to distinguish between (i) a problem solving activity (high cognitive load), (ii) a leisure activity (moderate cognitive load), and (iii) daydreaming (low cognitive load) with high accuracy in the test dataset. In a second study, we found that these physiological features can be used to predict accurately user-reported mental focus in the test dataset, even when relatively small numbers of training data were used. We explain how these findings inform the development and implementation of a wearable device for temporal tracking and logging a user’s learning activities and cognitive load. 
    more » « less