skip to main content


Search for: All records

Creators/Authors contains: "Grapperhaus, Craig A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    A series of isomeric bis(alkylthiocarbamate) copper complexes have been synthesized, characterized, and evaluated for antiproliferation activity. The complexes were derived from ligand isomers with 3‐methylpentyl (H2L2) and cyclohexyl (H2L3) backbone substituents, which each yield a pair of linkage isomers. The thermodynamic products CuL2a/3ahave two imino N and two S donors resulting in three five‐member chelate rings (555 isomers). The kinetic isomers CuL2b/3bhave one imino and one hydrazino N donor and two S donors resulting in four‐, six‐, and five‐member rings (465 isomers). The 555 isomers have more accessible CuII/Ipotentials (E1/2=−811/−768 mV vs. ferrocenium/ferrocene) and lower energy charge transfer bands than their 465 counterparts (E1/2=−923/‐854 mV). Antiproliferation activities were evaluated against the lung adenocarcinoma cell line (A549) and nonmalignant lung fibroblast cell line (IMR‐90) using the MTT assay. CuL2awas potent (A549EC50=0.080 μM) and selective (IMR‐90EC50/A549EC50=25) for A549. Its linkage isomer CuL2bhad equivalent A549 activity, but lower selectivity (IMR‐90EC50/A549EC50=12.5). The isomers CuL3aand CuL3bwere less potent withA549EC50 values of 1.9 and 0.19 M and less selective withIMR‐90EC50/A549EC50ratios of 2.3 and 2.65, respectively. There was no correlation between reduction potential and A549 antiproliferation activity/selectivity.

     
    more » « less
    Free, publicly-accessible full text available September 29, 2024
  2. Free, publicly-accessible full text available September 1, 2024
  3. Increasing fossil fuel demands and growing concerns of global climate change have stimulated interest in the development of electrocatalysts to produce H 2 as an alternative zero-emission fuel from the electrolysis of water via hydrogen evolution reaction (HER). Precious or non-precious catalysts are typically loaded on high surface area carbon materials, and these supports play a critical role in both thermodynamics and kinetics of the HER. In this paper, we evaluate the electrocatalytic activity of a molecular hydrogen evolving catalyst, diacetyl-bis(4-methyl)-3-thiosemicarbazone Ni( ii ) (Ni-ATSM), on three different carbon surfaces: glassy carbon, carbon paste and pencil graphite. The overpotential for each modified electrode was benchmarked at a current density of −10 mA cm −2 . Carbon paste electrodes showed highest overpotentials (495 mV) compared to the other electrode surfaces. Polished pencil and glassy carbon modified electrodes performed similarly ( η = 395 mV for GCE and η = 400 mV for pencil). Pencil electrodes etched in acetone overnight prior to Ni-ATSM deposition produced lowest overpotentials ( η = 354 mV). Etching results in an increase in electroactive surface area and substantial decrease in the charge transfer resistance of the graphitic interface from 275 Ω to 50 Ω, verified using electrochemical impedance spectroscopy (EIS). Our studies demonstrate pencil graphite may serve as versatile, disposable, cost effective, and reproducible electrode surface for the evaluation of heterogeneous HER catalysts. Moreover, pencils can be easily cut with table saw to generate new surface for easy characterization of the surface such as electrochemistry, imaging and spectroscopy. 
    more » « less
  4. null (Ed.)
  5. null (Ed.)