skip to main content


Search for: All records

Creators/Authors contains: "Greenberg, Eran"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The stable forms of carbon in Earth’s deep interior control storage and fluxes of carbon through the planet over geologic time, impacting the surface climate as well as carrying records of geologic processes in the form of diamond inclusions. However, current estimates of the distribution of carbon in Earth’s mantle are uncertain, due in part to limited understanding of the fate of carbonates through subduction, the main mechanism that transports carbon from Earth’s surface to its interior. Oxidized carbon carried by subduction has been found to reside in MgCO 3 throughout much of the mantle. Experiments in this study demonstrate that at deep mantle conditions MgCO 3 reacts with silicates to form CaCO 3 . In combination with previous work indicating that CaCO 3 is more stable than MgCO 3 under reducing conditions of Earth’s lowermost mantle, these observations allow us to predict that the signature of surface carbon reaching Earth’s lowermost mantle may include CaCO 3 . 
    more » « less
  2. Abstract

    Experiments investigating magnetic-field-tuned superconductor–insulator transition (HSIT) mostly focus on two-dimensional material systems where the transition and its proximate ground-state phases, often exhibit features that are seemingly at odds with the expected behavior. Here we present a complementary study of a three-dimensional pressure-packed amorphous indium-oxide (InOx) powder where granularity controls the HSIT. Above a low threshold pressure of ∼0.2 GPa, vestiges of superconductivity are detected, although neither a true superconducting transition nor insulating behavior are observed. Instead, a saturation at very high resistivity at low pressure is followed by saturation at very low resistivity at higher pressure. We identify both as different manifestations of anomalous metallic phases dominated by superconducting fluctuations. By analogy with previous identification of the low resistance saturation as a ‘failed superconductor’, our data suggests that the very high resistance saturation is a manifestation of a ‘failed insulator’. Above a threshold pressure of ∼6 GPa, the sample becomes fully packed, and superconductivity is robust, withTCtunable with pressure. A quantum critical point atPC∼ 25 GPa marks the complete suppression of superconductivity. For a finite pressure belowPC, a magnetic field is shown to induce a HSIT from a true zero-resistance superconducting state to a weakly insulating behavior. Determining the critical field,HC, we show that similar to the 2D behavior, the insulating-like state maintains a superconducting character, which is quenched at higher field, above which the magnetoresistance decreases to its fermionic normal state value.

     
    more » « less
  3. Light elements in Earth’s core play a key role in driving convection and influencing geodynamics, both of which are crucial to the geodynamo. However, the thermal transport properties of iron alloys at high-pressure and -temperature conditions remain uncertain. Here we investigate the transport properties of solid hexagonal close-packed and liquid Fe-Si alloys with 4.3 and 9.0 wt % Si at high pressure and temperature using laser-heated diamond anvil cell experiments and first-principles molecular dynamics and dynamical mean field theory calculations. In contrast to the case of Fe, Si impurity scattering gradually dominates the total scattering in Fe-Si alloys with increasing Si concentration, leading to temperature independence of the resistivity and less electron–electron contribution to the conductivity in Fe-9Si. Our results show a thermal conductivity of ∼100 to 110 W⋅m −1 ⋅K −1 for liquid Fe-9Si near the topmost outer core. If Earth’s core consists of a large amount of silicon (e.g., > 4.3 wt %) with such a high thermal conductivity, a subadiabatic heat flow across the core–mantle boundary is likely, leaving a 400- to 500-km-deep thermally stratified layer below the core–mantle boundary, and challenges proposed thermal convection in Fe-Si liquid outer core. 
    more » « less
  4. null (Ed.)
    Abstract Calcium carbonate (CaCO3) is one of the most abundant carbonates on Earth's surface and transports carbon to Earth's interior via subduction. Although some petrological observations support the preservation of CaCO3 in cold slabs to lower mantle depths, the geophysical properties and stability of CaCO3 at these depths are not known, due in part to complicated polymorphic phase transitions and lack of constraints on thermodynamic properties. Here we measured thermal equation of state of CaCO3-Pmmn, the stable polymorph of CaCO3 through much of the lower mantle, using synchrotron X-ray diffraction in a laser-heated diamond-anvil cell up to 75 GPa and 2200 K. The room-temperature compression data for CaCO3-Pmmn are fit with third-order Birch-Murnaghan equation of state, yielding KT0 = 146.7 (±1.9) GPa and K′0 = 3.4(±0.1) with V0 fixed to the value determined by ab initio calculation, 97.76 Å3. High-temperature compression data are consistent with zero-pressure thermal expansion αT = a0 + a1T with a0 = 4.3(±0.3)×10-5 K-1, a1 = 0.8(±0.2)×10-8 K-2, temperature derivative of the bulk modulus (∂KT/∂T)P = –0.021(±0.001) GPa/K; the Grüneisen parameter γ0 = 1.94(±0.02), and the volume independent constant q = 1.9(±0.3) at a fixed Debye temperature θ0 = 631 K predicted via ab initio calculation. Using these newly determined thermodynamic parameters, the density and bulk sound velocity of CaCO3-Pmmn and (Ca,Mg)-carbonate-bearing eclogite are quantitatively modeled from 30 to 80 GPa along a cold slab geotherm. With the assumption that carbonates are homogeneously mixed into the slab, the results indicate the presence of carbonates in the subducted slab is unlikely to be detected by seismic observations, and the buoyancy provided by carbonates has a negligible effect on slab dynamics. 
    more » « less
  5. null (Ed.)
  6. Abstract

    Although high pressure enables alloying between hydrogen and iron, hydrogen‐to‐iron molar ratio (H/Fe) so far found in experiments is mostly limited to 1 in the close‐packed iron metal under high pressure. We report a H/(Fe + Ni) ratio of 1.8 ± 0.1 from (Fe,Ni)Hx(orx ≥ 1.8) quenched from liquid, exceeding the amounts so far reported for densely packed Fe alloys. From the metastable behavior of the frozen (Fe,Ni)Hxliquid during decompression, we infer that the amount is a lower bound and therefore even a greater amount of H can be dissolved in the liquid part of Fe‐rich cores of planets. The significant H storage capacity of liquid Fe‐Ni alloy is important to consider for potential storage of H in the interiors of low‐density planets as well as rocky planets.

     
    more » « less
  7. null (Ed.)
  8. null (Ed.)
    Understanding the effect of carbon on the density of hcp (hexagonal-close-packed) Fe-C alloys is essential for modeling the carbon content in the Earth’s inner core. Previous studies have focused on the equations of state of iron carbides that may not be applicable to the solid inner core that may incorporate carbon as dissolved carbon in metallic iron. Carbon substitution in hcp-Fe and its effect on the density have never been experimentally studied. We investigated the compression behavior of Fe-C alloys with 0.31 and 1.37 wt % carbon, along with pure iron as a reference, by in-situ X-ray diffraction measurements up to 135 GPa for pure Fe, and 87 GPa for Fe-0.31C and 109 GPa for Fe-1.37C. The results show that the incorporation of carbon in hcp-Fe leads to the expansion of the lattice, contrary to the known effect in body-centered cubic (bcc)-Fe, suggesting a change in the substitution mechanism or local environment. The data on axial compressibility suggest that increasing carbon content could enhance seismic anisotropy in the Earth’s inner core. The new thermoelastic parameters allow us to develop a thermoelastic model to estimate the carbon content in the inner core when carbon is incorporated as dissolved carbon hcp-Fe. The required carbon contents to explain the density deficit of Earth’s inner core are 1.30 and 0.43 wt % at inner core boundary temperatures of 5000 K and 7000 K, respectively. 
    more » « less