skip to main content


Search for: All records

Creators/Authors contains: "Gross, E."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. - (Ed.)
    Abstract Designing materials with advanced functionalities is the main focus of contemporary solid-state physics and chemistry. Research efforts worldwide are funneled into a few high-end goals, one of the oldest, and most fascinating of which is the search for an ambient temperature superconductor (A-SC). The reason is clear: superconductivity at ambient conditions implies being able to handle, measure and access a single, coherent, macroscopic quantum mechanical state without the limitations associated with cryogenics and pressurization. This would not only open exciting avenues for fundamental research, but also pave the road for a wide range of technological applications, affecting strategic areas such as energy conservation and climate change. In this roadmap we have collected contributions from many of the main actors working on superconductivity, and asked them to share their personal viewpoint on the field. The hope is that this article will serve not only as an instantaneous picture of the status of research, but also as a true roadmap defining the main long-term theoretical and experimental challenges that lie ahead. Interestingly, although the current research in superconductor design is dominated by conventional (phonon-mediated) superconductors, there seems to be a widespread consensus that achieving A-SC may require different pairing mechanisms. In memoriam, to Neil Ashcroft, who inspired us all. 
    more » « less
  2. Free, publicly-accessible full text available August 1, 2024
  3. Free, publicly-accessible full text available July 1, 2024
  4. A<sc>bstract</sc>

    Measurements of Higgs boson production cross-sections are carried out in the diphoton decay channel using 139 fb1ofppcollision data at$$ \sqrt{s} $$s= 13 TeV collected by the ATLAS experiment at the LHC. The analysis is based on the definition of 101 distinct signal regions using machine-learning techniques. The inclusive Higgs boson signal strength in the diphoton channel is measured to be$$ {1.04}_{-0.09}^{+0.10} $$1.040.09+0.10. Cross-sections for gluon-gluon fusion, vector-boson fusion, associated production with aWorZboson, and top associated production processes are reported. An upper limit of 10 times the Standard Model prediction is set for the associated production process of a Higgs boson with a single top quark, which has a unique sensitivity to the sign of the top quark Yukawa coupling. Higgs boson production is further characterized through measurements of Simplified Template Cross-Sections (STXS). In total, cross-sections of 28 STXS regions are measured. The measured STXS cross-sections are compatible with their Standard Model predictions, with ap-value of 93%. The measurements are also used to set constraints on Higgs boson coupling strengths, as well as on new interactions beyond the Standard Model in an effective field theory approach. No significant deviations from the Standard Model predictions are observed in these measurements, which provide significant sensitivity improvements compared to the previous ATLAS results.

     
    more » « less
    Free, publicly-accessible full text available July 1, 2024
  5. A bstract A search for Higgs boson pair production in events with two b -jets and two τ -leptons is presented, using a proton–proton collision dataset with an integrated luminosity of 139 fb − 1 collected at $$ \sqrt{s} $$ s = 13 TeV by the ATLAS experiment at the LHC. Higgs boson pairs produced non-resonantly or in the decay of a narrow scalar resonance in the mass range from 251 to 1600 GeV are targeted. Events in which at least one τ -lepton decays hadronically are considered, and multivariate discriminants are used to reject the backgrounds. No significant excess of events above the expected background is observed in the non-resonant search. The largest excess in the resonant search is observed at a resonance mass of 1 TeV, with a local (global) significance of 3 . 1 σ (2 . 0 σ ). Observed (expected) 95% confidence-level upper limits are set on the non-resonant Higgs boson pair-production cross-section at 4.7 (3.9) times the Standard Model prediction, assuming Standard Model kinematics, and on the resonant Higgs boson pair-production cross-section at between 21 and 900 fb (12 and 840 fb), depending on the mass of the narrow scalar resonance. 
    more » « less
    Free, publicly-accessible full text available July 1, 2024
  6. Abstract A study of the charge conjugation and parity ( $$\textit{CP}$$ CP ) properties of the interaction between the Higgs boson and $$\tau $$ τ -leptons is presented. The study is based on a measurement of $$\textit{CP}$$ CP -sensitive angular observables defined by the visible decay products of $$\tau $$ τ -leptons produced in Higgs boson decays. The analysis uses 139 fb $$^{-1}$$ - 1 of proton–proton collision data recorded at a centre-of-mass energy of $$\sqrt{s}= 13$$ s = 13  TeV with the ATLAS detector at the Large Hadron Collider. Contributions from $$\textit{CP}$$ CP -violating interactions between the Higgs boson and $$\tau $$ τ -leptons are described by a single mixing angle parameter $$\phi _{\tau }$$ ϕ τ in the generalised Yukawa interaction. Without constraining the $$H\rightarrow \tau \tau $$ H → τ τ signal strength to its expected value under the Standard Model hypothesis, the mixing angle $$\phi _{\tau }$$ ϕ τ is measured to be $$9^{\circ } \pm 16^{\circ }$$ 9 ∘ ± 16 ∘ , with an expected value of $$0^{\circ } \pm 28^{\circ }$$ 0 ∘ ± 28 ∘ at the 68% confidence level. The pure $$\textit{CP}$$ CP -odd hypothesis is disfavoured at a level of 3.4 standard deviations. The results are compatible with the predictions for the Higgs boson in the Standard Model. 
    more » « less
    Free, publicly-accessible full text available July 1, 2024