skip to main content


Search for: All records

Creators/Authors contains: "Grundmann, Marius"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. X Ray Photoelectron Spectroscopy was used to measure valence band offsets for Al 2 O 3 deposited by Atomic Layer Deposition on α -(Al x Ga 1-x ) 2 O 3 alloys over a wide range of Al contents, x, from 0.26–0.74, corresponding to a bandgap range from 5.8–7 eV. These alloys were grown by Pulsed Laser Deposition. The band alignments were type I (nested) at x <0.5, with valence band offsets 0.13 eV for x = 0.26 and x = 0.46. At higher Al contents, the band alignment was a staggered alignment, with valence band offsets of − 0.07 eV for x = 0.58 and −0.17 for x = 0.74, ie. negative valence band offsets in both cases. The conduction band offsets are also small at these high Al contents, being only 0.07 eV at x = 0.74. The wide bandgap of the α -(Al x Ga 1-x ) 2 O 3 alloys makes it difficult to find dielectrics with nested band alignments over the entire composition range. 
    more » « less
  2. Valence band offsets for SiO 2 deposited by Atomic Layer Deposition on α -(Al x Ga 1-x ) 2 O 3 alloys with x = 0.26–0.74 were measured by X-ray Photoelectron Spectroscopy. The samples were grown with a continuous composition spread to enable investigations of the band alignment as a function of the alloy composition. From measurement of the core levels in the alloys, the bandgaps were determined to range from 5.8 eV (x = 0.26) to 7 eV (x = 0.74). These are consistent with previous measurements by transmission spectroscopy. The valence band offsets of SiO 2 with these alloys of different composition were, respectively, were −1.2 eV for x = 0.26, −0.2 eV for x = 0.42, 0.2 eV for x = 0.58 and 0.4 eV for x = 0.74. All of these band offsets are too low for most device applications. Given the bandgap of the SiO 2 was 8.7 eV, this led to conduction band offsets of 4.1 eV (x = 0.26) to 1.3 eV (x = 0.74). The band alignments were of the desired nested configuration for x > 0.5, but at lower Al contents the conduction band offsets were negative, with a staggered band alignment. This shows the challenge of finding appropriate dielectrics for this ultra-wide bandgap semiconductor system. 
    more » « less
  3. The band alignment of Atomic Layer Deposited SiO2on (InxGa1−x)2O3at varying indium concentrations is reported before and after annealing at 450 °C and 600 °C to simulate potential processing steps during device fabrication and to determine the thermal stability of MOS structures in high-temperature applications. At all indium concentrations studied, the valence band offsets (VBO) showed a nearly constant decrease as a result of 450 °C annealing. The decrease in VBO was −0.35 eV for (In0.25Ga0.75)2O3, −0.45 eV for (In0.42Ga0.58)2O3, −0.40 eV for (In0.60Ga0.40)2O3, and −0.35 eV (In0.74Ga0.26)2O3for 450 °C annealing. After annealing at 600 °C, the band alignment remained stable, with <0.1 eV changes for all structures examined, compared to the offsets after the 450 °C anneal. The band offset shifts after annealing are likely due to changes in bonding at the heterointerface. Even after annealing up to 600 °C, the band alignment remains type I (nested gap) for all indium compositions of (InxGa1−x)2O3studied.

     
    more » « less