skip to main content


Search for: All records

Creators/Authors contains: "Grusdt, Fabian"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Quantum many-body scarring is a paradigm of weak ergodicity breaking arising due to the presence of special nonthermal many-body eigenstates that possess low entanglement entropy, are equally spaced in energy, and concentrate in certain parts of the Hilbert space. Though scars have been shown to be intimately connected to gauge theories, their stability in such experimentally relevant models is still an open question, and it is generally considered that they exist only under fine-tuned conditions. In this work, we show through Krylov-based time-evolution methods how quantum many-body scars can be made robust in the presence of experimental errors through utilizing terms linear in the gauge-symmetry generator or a simplified pseudogenerator in U ( 1 ) and Z 2 lattice gauge theories. Our findings are explained by the concept of quantum Zeno dynamics. Our experimentally feasible methods can be readily implemented in existing large-scale ultracold-atom quantum simulators and setups of Rydberg atoms with optical tweezers. 
    more » « less
    Free, publicly-accessible full text available May 15, 2024
  2. Free, publicly-accessible full text available May 1, 2024
  3. In strongly correlated quantum materials, the behavior of charge carriers is dominated by strong electron-electron interactions. These can lead to insulating states with spin order, and upon doping to competing ordered states including unconventional superconductivity. The underlying pairing mechanism remains poorly understood however, even in strongly simplified theoretical models. Recent advances in quantum simulation allow to study pairing in paradigmatic settings, e.g. in the t-J t − J and t-J_z t − J z Hamiltonians. Even there, the most basic properties of paired states of only two dopants, such as their dispersion relation and excitation spectra, remain poorly studied in many cases. Here we provide new analytical insights into a possible string-based pairing mechanism of mobile holes in an antiferromagnet. We analyze an effective model of partons connected by a confining string and calculate the spectral properties of bound states. Our model is equally relevant for understanding Hubbard-Mott excitons consisting of a bound doublon-hole pair or confined states of dynamical matter in lattice gauge theories, which motivates our study of different parton statistics. Although an accurate semi-analytic estimation of binding energies is challenging, our theory provides a detailed understanding of the internal structure of pairs. For example, in a range of settings we predict heavy states of immobile pairs with flat-band dispersions - including for the lowest-energy d d -wave pair of fermions. Our findings shed new light on the long-standing question about the origin of pairing and competing orders in high-temperature superconductors. 
    more » « less
  4. Abstract Conventional superconductivity emerges from pairing of charge carriers—electrons or holes—mediated by phonons 1 . In many unconventional superconductors, the pairing mechanism is conjectured to be mediated by magnetic correlations 2 , as captured by models of mobile charges in doped antiferromagnets 3 . However, a precise understanding of the underlying mechanism in real materials is still lacking and has been driving experimental and theoretical research for the past 40 years. Early theoretical studies predicted magnetic-mediated pairing of dopants in ladder systems 4–8 , in which idealized theoretical toy models explained how pairing can emerge despite repulsive interactions 9 . Here we experimentally observe this long-standing theoretical prediction, reporting hole pairing due to magnetic correlations in a quantum gas of ultracold atoms. By engineering doped antiferromagnetic ladders with mixed-dimensional couplings 10 , we suppress Pauli blocking of holes at short length scales. This results in a marked increase in binding energy and decrease in pair size, enabling us to observe pairs of holes predominantly occupying the same rung of the ladder. We find a hole–hole binding energy of the order of the superexchange energy and, upon increased doping, we observe spatial structures in the pair distribution, indicating repulsion between bound hole pairs. By engineering a configuration in which binding is strongly enhanced, we delineate a strategy to increase the critical temperature for superconductivity. 
    more » « less
  5. Abstract Interacting many-body systems in reduced-dimensional settings, such as ladders and few-layer systems, are characterized by enhanced quantum fluctuations. Recently, two-dimensional bilayer systems have sparked considerable interest because they can host unusual phases, including unconventional superconductivity. Here we present a theoretical proposal for realizing high-temperature pairing of fermions in a class of bilayer Hubbard models. We introduce a general and highly efficient pairing mechanism for mobile charge carriers in doped antiferromagnetic Mott insulators. The pairing is caused by the energy that one charge gains when it follows the path created by another charge. We show that this mechanism leads to the formation of highly mobile but tightly bound pairs in the case of mixed-dimensional Fermi–Hubbard bilayer systems. This setting is closely related to the Fermi–Hubbard model believed to capture the physics of copper oxides, and can be realized in currently available ultracold atom experiments. 
    more » « less