skip to main content


Search for: All records

Creators/Authors contains: "Gruss, Daniel"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    The recent Spectre attack first showed how to inject incorrect branch targets into a victim domain by poisoning microarchitectural branch prediction history. In this paper, we generalize injection-based methodologies to the memory hierarchy by directly injecting incorrect, attacker-controlled values into a victim's transient execution. We propose Load Value Injection (LVI) as an innovative technique to reversely exploit Meltdown-type microarchitectural data leakage. LVI abuses that faulting or assisted loads, executed by a legitimate victim program, may transiently use dummy values or poisoned data from various microarchitectural buffers, before eventually being re-issued by the processor. We show how LVI gadgets allow to expose victim secrets and hijack transient control flow. We practically demonstrate LVI in several proof-of-concept attacks against Intel SGX enclaves, and we discuss implications for traditional user process and kernel isolation. State-of-the-art Meltdown and Spectre defenses, including widespread silicon-level and microcode mitigations, are orthogonal to our novel LVI techniques. LVI drastically widens the spectrum of incorrect transient paths. Fully mitigating our attacks requires serializing the processor pipeline with lfence instructions after possibly every memory load. Additionally and even worse, due to implicit loads, certain instructions have to be blacklisted, including the ubiquitous x86 ret instruction. Intel plans compiler and assembler-based full mitigations that will allow at least SGX enclave programs to remain secure on LVI-vulnerable systems. Depending on the application and optimization strategy, we observe extensive overheads of factor 2 to 19 for prototype implementations of the full mitigation. 
    more » « less
  2. null (Ed.)
    In early 2018, Meltdown first showed how to read arbitrary kernel memory from user space by exploiting side-effects from transient instructions. While this attack has been mitigated through stronger isolation boundaries between user and kernel space, Meltdown inspired an entirely new class of fault-driven transient-execution attacks. Particularly, over the past year, Meltdown-type attacks have been extended to not only leak data from the L1 cache but also from various other microarchitectural structures, including the FPU register file and store buffer. In this paper, we present the ZombieLoad attack which uncovers a novel Meltdown-type effect in the processor’s fill-buffer logic. Our analysis shows that faulting load instructions (i.e., loads that have to be re-issued) may transiently dereference unauthorized destinations previously brought into the fill buffer by the current or a sibling logical CPU. In contrast to concurrent attacks on the fill buffer, we are the first to report data leakage of recently loaded and stored stale values across logical cores even on Meltdown- and MDS-resistant processors. Hence, despite Intel’s claims [36], we show that the hardware fixes in new CPUs are not sufficient. We demonstrate ZombieLoad’s effectiveness in a multitude of practical attack scenarios across CPU privilege rings, OS processes, virtual machines, and SGX enclaves. We discuss both short and long-term mitigation approaches and arrive at the conclusion that disabling hyperthreading is the only possible workaround to prevent at least the most-powerful cross-hyperthread attack scenarios on current processors, as Intel’s software fixes are incomplete. 
    more » « less
  3. null (Ed.)
    Meltdown and Spectre enable arbitrary data leakage from memory via various side channels. Short-term software mitigations for Meltdown are only a temporary solution with a significant performance overhead. Due to hardware fixes, these mitigations are disabled on recent processors. In this paper, we show that Meltdown-like attacks are still possible on recent CPUs which are not vulnerable to Meltdown. We identify two behaviors of the store buffer, a microarchitectural resource to reduce the latency for data stores, that enable powerful attacks. The first behavior, Write Transient Forwarding forwards data from stores to subsequent loads even when the load address differs from that of the store. The second, Store-to-Leak exploits the interaction between the TLB and the store buffer to leak metadata on store addresses. Based on these, we develop multiple attacks and demonstrate data leakage, control flow recovery, and attacks on ASLR. Our paper shows that Meltdown-like attacks are still possible, and software fixes with potentially significant performance overheads are still necessary to ensure proper isolation between the kernel and user space. 
    more » « less