skip to main content


Search for: All records

Creators/Authors contains: "Guenther, Jana N."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Kim, Y. ; Moon, D.H. (Ed.)
    In this contribution we present a resummation of the Quantum Chromodynamics (QCD) equation of state from lattice simulations at imaginary chemical potentials. We generalize the scheme introduced in a previous work [1], to the case of non-zero strangeness chemical potential. We present continuum extrapolated results for thermodynamic observables in the temperature range 130MeV ≤ T ≤ 280 MeV, for chemical potentials up to μ B / T = 3:5, along the strangeness neutral line. Furthermore, we relax the constraint of strangeness neutrality, by extrapolating to small values of the strangeness-to-baryon-number ratio R = n S / n B . 
    more » « less
  2. Free, publicly-accessible full text available November 1, 2024
  3. David, G. ; Garg, P. ; Kalweit, A. ; Mukherjee, S. ; Ullrich, T. ; Xu, Z. ; Yoo, I.-K. (Ed.)
    The Taylor expansion approach to the equation of state of QCD at finite chemical potential struggles to reach large chemical potential μ B . This is primarily due to the intrinsic diffculty in precisely determining higher order Taylor coefficients, as well as the structure of the temperature dependence of such observables. In these proceedings, we illustrate a novel scheme [1] that allows us to extrapolate the equation of state of QCD without suffering from the poor convergence typical of the Taylor expansion approach. We continuum extrapolate the coefficients of our new expansion scheme and show the thermodynamic observables up to μ B / T ≤ 3.5. 
    more » « less
  4. null (Ed.)
  5. null (Ed.)
  6. null (Ed.)
  7. Vitev, I. ; da Silva, C. ; Mioduszewski, S. ; Ratti, C. ; Sarcevic, I. ; Schlegel, M. (Ed.)
    We discuss the usefulness of various lattice observables especially fluctuations to locate the QCD critical endpoint. We apply different models to interpret our results for the baryon fluctuations up to µ 8 from simulations at imaginary chemical potentials. 
    more » « less