skip to main content


Search for: All records

Creators/Authors contains: "Guha, Suchismita"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The solution processability of organic semiconductors and conjugated polymers along with the advent of nanomaterials as conducting inks have revolutionized next-generation flexible consumer electronics. Another equally important class of nanomaterials, self-assembled peptides, heralded as next-generation materials for bioelectronics, have a lot of potential in printed technology. In this minireview, we address the self-assembly process in dipeptides, their application in electronics, and recent progress in three-dimensional printing. The prospect of a generalizable path for nanopatterning self-assembled peptides using ice lithography and its challenges are further discussed. 
    more » « less
  2. null (Ed.)
  3. null (Ed.)
    The use of high κ dielectrics lowers the operating voltage in organic field-effect transistors (FETs). Polymer ferroelectrics open the path not just for high κ values but allow processing of the dielectric films via electrical poling. Poled ferroelectric dielectrics in p-type organic FETs was seen to improve carrier mobility and reduce leakage current when compared to unpoled devices using the same dielectric. For n-type FETs, solution-processed ZnO films provide a viable low-cost option. UV–ozone-treated ZnO films was seen to improve the FET performance due to the filling of oxygen vacancies. P-type FETs were fabricated using the ferroelectric polymer poly(vinylidene fluoride-trifluoroethylene) (PVDF-TrFE) as the dielectric along with a donor–acceptor polymer based on diketopyrrolopyrrole (DPP-DTT) as the semiconductor layer. The DPP-DTT FETs yield carrier mobilities upwards of 0.4 cm2/Vs and high on/off ratios when the PVDF-TrFE layer is electrically poled. For n-type FETs, UV–ozone-treated sol–gel ZnO films on SiO2 yield carrier mobilities of 10−2 cm2/Vs. DPP-DTT-based p- and ZnO-based n-type FETs were used in a complementary voltage inverter circuit, showing promising characteristic gain. A basic inverter model was used to simulate the inverter characteristics, using parameters from the individual FET characteristics. 
    more » « less
  4. null (Ed.)
  5. null (Ed.)
  6. null (Ed.)
  7. null (Ed.)
  8. null (Ed.)