skip to main content


Search for: All records

Creators/Authors contains: "Guilderson, Thomas P."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Photosynthesis in the surface ocean converts atmospheric CO2into organic particles, with the fraction sinking to depth representing a major part of the ocean's biological pump. Although sinking particles are known to be altered by attached‐bacteria during transit, most prior organic geochemical data indicated only minor replacement of plankton‐derived particles by bacterial material. We exploit bacteria‐specific biomarkers (d‐amino acids) in a multi‐year sediment trap in the Pacific Ocean (1,200 m) and suggest a different view. Majord‐amino acids were consistently measured at abundance demonstrating widespread accumulation of bacterial material in sinking particles. Bacterial detritus was estimated to account for up to 19% of particulate organic carbon and up to 36% of particulate nitrogen, much higher than cell count‐based values. The bacterial relative contribution increased with decreasing export production. Our results indicate that bacterial material constitutes an underappreciated component of the biological pump, a role expected to rise as the ocean warms.

     
    more » « less
  2. Abstract

    We have generated a high‐resolution coral Δ14C record from the leeward side of the Big Island of Hawai’i in the subtropical North Pacific. The record spans 1947–1992, when the coral was collected, and includes a brief prebomb interval as well as the postbomb era. Mean prebomb (1947–1954) values average −55‰ (±1, SE of the mean) with a clear seasonal cycle. Values are less positive during winter when vertical exchange mixes surface and lower‐14C subsurface waters. The postbomb annual maximum occurs in 1971 (+160‰) and decreases in a series of shifts to +105‰ in 1991, the end of our coral‐based reconstruction. The decrease is not monotonic and has inflection points during the La Niña years of 1973, 1977, and 1984. Imbedded in the Δ14C record is interannual variability in the El Nino‐Southern Oscillation band which is interpreted to reflect the lateral advection of low latitude surface waters as part of the oceanic Hadley Cell driven by Sverdrup dynamics.

     
    more » « less
  3. ABSTRACT Radiocarbon (14C) ages cannot provide absolutely dated chronologies for archaeological or paleoenvironmental studies directly but must be converted to calendar age equivalents using a calibration curve compensating for fluctuations in atmospheric 14C concentration. Although calibration curves are constructed from independently dated archives, they invariably require revision as new data become available and our understanding of the Earth system improves. In this volume the international 14C calibration curves for both the Northern and Southern Hemispheres, as well as for the ocean surface layer, have been updated to include a wealth of new data and extended to 55,000 cal BP. Based on tree rings, IntCal20 now extends as a fully atmospheric record to ca. 13,900 cal BP. For the older part of the timescale, IntCal20 comprises statistically integrated evidence from floating tree-ring chronologies, lacustrine and marine sediments, speleothems, and corals. We utilized improved evaluation of the timescales and location variable 14C offsets from the atmosphere (reservoir age, dead carbon fraction) for each dataset. New statistical methods have refined the structure of the calibration curves while maintaining a robust treatment of uncertainties in the 14C ages, the calendar ages and other corrections. The inclusion of modeled marine reservoir ages derived from a three-dimensional ocean circulation model has allowed us to apply more appropriate reservoir corrections to the marine 14C data rather than the previous use of constant regional offsets from the atmosphere. Here we provide an overview of the new and revised datasets and the associated methods used for the construction of the IntCal20 curve and explore potential regional offsets for tree-ring data. We discuss the main differences with respect to the previous calibration curve, IntCal13, and some of the implications for archaeology and geosciences ranging from the recent past to the time of the extinction of the Neanderthals. 
    more » « less
  4. Abstract

    The composition and cycling dynamics of marine dissolved organic carbon (DOC) have received increased interest in recent years; however, little research has focused on the refractory, low molecular weight (LMW) component that makes up the majority of this massive C pool. We measured stable isotopic (δ13C), radioisotopic (Δ14C), and compositional (C/N,13C solid‐state NMR) properties of separately isolated high molecular weight (HMW) and LMW DOC fractions collected using a coupled ultrafiltration and solid phase extraction approach from throughout the water column in the North Central Pacific and Central North Atlantic. The selective isolation of LMW DOC material allowed the first investigation of the composition and cycling of a previously elusive fraction of the DOC pool. The structural composition of the LMW DOC material was homogeneous throughout the water column and closely matched carboxylic‐rich alicyclic material that has been proposed as a major component of the marine refractory DOC pool. Examination of offsets in the measured parameters between the deep waters of the two basins provides the first direct assessment of changes in the properties of this material with aging and utilization during ocean circulation. While our direct measurements largely confirm hypotheses regarding the relative recalcitrance of HMW and LMW DOC, we also demonstrate a number of novel observations regarding the removal and addition of DOC during global ocean circulation, including additions of fresh carbohydrate‐like HMW DOC to the deep ocean and large‐scale removal of both semilabile HMW and recalcitrant LMW DOC.

     
    more » « less
  5. Abstract

    Reflooding formerly drained peatlands has been proposed as a means to reduce losses of organic matter and sequester soil carbon for climate change mitigation, but a renewal of high methane emissions has been reported for these ecosystems, offsetting mitigation potential. Our ability to interpret observed methane fluxes in reflooded peatlands and make predictions about future flux trends is limited due to a lack of detailed studies of methanogenic processes. In this study we investigate methanogenesis in a reflooded agricultural peatland in the Sacramento Delta, California. We use the stable‐and radio‐carbon isotopic signatures of wetland sediment methane, ecosystem‐scale eddy covariance flux observations, and laboratory incubation experiments, to identify which carbon sources and methanogenic production pathways fuel methanogenesis and how these processes are affected by vegetation and seasonality. We found that the old peat contribution to annual methane emissions was large (~30%) compared to intact wetlands, indicating a biogeochemical legacy of drainage. However, fresh carbon and the acetoclastic pathway still accounted for the majority of methanogenesis throughout the year. Although temperature sensitivities for bulk peat methanogenesis were similar between open‐water (Q10 = 2.1) and vegetated (Q10 = 2.3) soils, methane production from both fresh and old carbon sources showed pronounced seasonality in vegetated zones. We conclude that high methane emissions in restored wetlands constitute a biogeochemical trade‐off with contemporary carbon uptake, given that methane efflux is fueled primarily by fresh carbon inputs.

     
    more » « less