skip to main content


Search for: All records

Creators/Authors contains: "Guo, Liping"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Artificial intelligence methods such as fuzzy logic and particle swarm optimization (PSO) have been applied to maximum power point tracking (MPPT) for solar panels. The P-V curve of a solar panel exhibits multiple peaks under partial shading condition (PSC) when all modules of a solar panel do not receive the same solar irradiation. Although conventional PSO has been shown to perform well under uniform insolation, it is often unable to find the global maximum power point under PSC. Fuzzy adaptive PSO controllers have been proposed for MPPT. However, the controller became computation-intensive in order to adjust the PSO parameters for each particle. In this paper, fuzzy adaptive PSO-based and conventional PSO-based MPPT are compared and evaluated in the aspect of design and performance. A simple fuzzy adaptive PSO controller for MPPT was designed to reach the global optimal point under PSC and uniform irradiation. The controller combines the advantages of both PSO and fuzzy control. The fuzzy controller dynamically adjusts the PSO parameter to improve the convergence speed and global search capability. Since tuning of the PSO parameter is designed to be common for all particles, it reduced the computation complexity. The fuzzy controller’s rule base is designed to obtain a fast transient response and stable steady state response. Design of the fuzzy adaptive PSO-based MPPT is verified with simulation results using a boost converter. The results are evaluated in comparison to the results using a conventional PSO controller under PSC. Simulation shows the fuzzy adaptive PSO-based MPPT is able to improve the global search process and increase the convergency speed. The comparison indicates the settling time using the fuzzy adaptive PSO-based MPPT is 14% faster under PSC on average and 30% faster under uniform irradiation than the settling time using the conventional PSO. Both the fuzzy adaptive and conventional PSO controllers have similar output power tracking accuracy. 
    more » « less
  2. null (Ed.)
    Renewable energy sources such as solar and wind provide an effective solution for reducing dependency on conventional power generation and increasing the reliability and quality of power systems. Presented in this paper are design and implementation of a laboratory scale solar microgrid cyber-physical system (CPS) with wireless data monitoring as a teaching tool in the engineering technology curriculum. In the system, the solar panel, battery, charge controller, and loads form the physical layer, while the sensors, communication networks, supervisory control and data acquisition systems (SCADA) and control systems form the cyber layer. The physical layer was seamlessly integrated with the cyber layer consisting of control and communication. The objective was to create a robust CPS platform and to use the system to promote interest in and knowledge of renewable energy among university students. Experimental results showed that the maximum power point tracking (MPPT) charge controller provided the loads with power from the solar panel and used additional power to charge the rechargeable battery. Through the system, students learned and mastered key concepts and knowledge of multi-disciplinary areas including data sampling and acquisition, analog to digital conversion, solar power, battery charging, control, embedded systems and software programing. It is a valuable teaching resource for students to study renewable energy in CPS. 
    more » « less
  3. null (Ed.)
  4. null (Ed.)
  5.  
    more » « less