skip to main content


Search for: All records

Creators/Authors contains: "Gutmann, Ethan D."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The rapid expansion of Earth system model (ESM) data available from the Coupled Model Intercomparison Project Phase 6 (CMIP6) necessitates new methods to evaluate the performance and suitability of ESMs used for hydroclimate applications as these extremely large data volumes complicate stakeholder efforts to use new ESM outputs in updated climate vulnerability and impact assessments. We develop an analysis framework to inform ESM sub‐selection based on process‐oriented considerations and demonstrate its performance for a regional application in the US Pacific Northwest. First, a suite of global and regional metrics is calculated, using multiple historical observation datasets to assess ESM performance. These metrics are then used to rank CMIP6 models, and a culled ensemble of models is selected using a trend‐related diagnostics approach. This culling strategy does not dramatically change climate scenario trend projections in this region, despite retaining only 20% of the CMIP6 ESMs in the final model ensemble. The reliability of the culled trend projection envelope and model response similarity is also assessed using a perfect model framework. The absolute difference in temperature trend projections is reduced relative to the full ensemble compared to the model for each SSP scenario, while precipitation trend errors are largely unaffected. In addition, we find that the spread of the culled ensemble temperature and precipitation trends includes the trend of the “truth” model ∼83%‐92% of the time. This analysis demonstrates a reliable method to reduce ESM ensemble size that can ease use of ESMs for creating and understanding climate vulnerability and impact assessments.

     
    more » « less
  2. Abstract

    Stormwater is a vital resource and dynamic driver of terrestrial ecosystem processes. However, processes controlling interactions during and shortly after storms are often poorly seen and poorly sensed when direct observations are substituted with technological ones. We discuss how human observations complement technological ones and the benefits of scientists spending more time in the storm. Human observation can reveal ephemeral storm-related phenomena such as biogeochemical hot moments, organismal responses, and sedimentary processes that can then be explored in greater resolution using sensors and virtual experiments. Storm-related phenomena trigger lasting, oversized impacts on hydrologic and biogeochemical processes, organismal traits or functions, and ecosystem services at all scales. We provide examples of phenomena in forests, across disciplines and scales, that have been overlooked in past research to inspire mindful, holistic observation of ecosystems during storms. We conclude that technological observations alone are insufficient to trace the process complexity and unpredictability of fleeting biogeochemical or ecological events without the shower thoughts produced by scientists’ human sensory and cognitive systems during storms.

     
    more » « less
  3. Abstract

    Statistical processing of numerical model output has been a part of both weather forecasting and climate applications for decades. Statistical techniques are used to correct systematic biases in atmospheric model outputs and to represent local effects that are unresolved by the model, referred to as downscaling. Many downscaling techniques have been developed, and it has been difficult to systematically explore the implications of the individual decisions made in the development of downscaling methods. Here we describe a unified framework that enables the user to evaluate multiple decisions made in the methods used to statistically postprocess output from weather and climate models. The Ensemble Generalized Analog Regression Downscaling (En-GARD) method enables the user to select any number of input variables, predictors, mathematical transformations, and combinations for use in parametric or nonparametric downscaling approaches. En-GARD enables explicitly predicting both the probability of event occurrence and the event magnitude. Outputs from En-GARD include errors in model fit, enabling the production of an ensemble of projections through sampling of the probability distributions of each climate variable. We apply En-GARD to regional climate model simulations to evaluate the relative importance of different downscaling method choices on simulations of the current and future climate. We show that choice of predictor variables is the most important decision affecting downscaled future climate outputs, while having little impact on the fidelity of downscaled outcomes for current climate. We also show that weak statistical relationships prevent such approaches from predicting large changes in extreme events on a daily time scale.

     
    more » « less
  4. Abstract

    Snowpack accumulation in forested watersheds depends on the amount of snow intercepted in the canopy and its partitioning into sublimation, unloading, and melt. A lack of canopy snow measurements limits our ability to evaluate models that simulate canopy processes and predict snowpack. We tested whether monitoring changes in wind‐induced tree sway is a viable technique for detecting snow interception and quantifying canopy snow water equivalent (SWE). Over a 6 year period in Colorado, we monitored hourly sway of two conifers, each instrumented with an accelerometer sampling at 12 Hz. We developed an approach to distinguish changes in sway frequency due to thermal effects on tree rigidity versus intercepted snow mass. Over 60% of days with canopy snow had a sway signal that could not be distinguished from thermal effects. However, larger changes in tree sway could not generally be attributed to thermal effects, and canopy snow was present 93%–95% of the time, as confirmed with classified PhenoCam imagery. Using sway tests, we converted changes in sway to canopy SWE, which were correlated with total snowstorm amounts from a nearby SNOTEL site (Spearmanr = 0.72 to 0.80,p < 0.001). Greater canopy SWE was associated with storm temperatures between −7°C and 0°C and wind speeds less than 4 m s−1. Lower canopy SWE prevailed in storms with lower temperatures and higher wind speeds. Monitoring tree sway is a viable approach for quantifying canopy SWE, but challenges remain in converting changes in sway to mass and distinguishing thermal and snow mass effects on tree sway.

     
    more » « less