skip to main content


Search for: All records

Creators/Authors contains: "Haines, Brandon E."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Herein we report a method to convert primary amines, ubiquitous motifs found in pharmaceutical libraries, to either imidazo[1,2-a]pyridines or 7-alkyl azaindoles in two steps from known compounds. Using halomucononitrile reagents, we can directly access 5-bromo-6-imino-1-alkyl-1,6-dihydropyridine-2-carbonitriles (pyridinimines) in a single step from primary amines (25–93% yield) through the cyclization of transient aminomucononitrile intermediates. We then demonstrate that these compounds can be readily converted to 7-alkylazaindoles using Sonogashira cross-coupling conditions (13 examples, up to 91% yield). Under oxidative conditions, the pyridinimines serve as directing groups for C–H functionalization reactions to afford imidazo[1,2-a]pyridines. We also studied the mechanism of the cyclization event using DFT calculations and propose that this takes place via sequential base-mediated E/Z isomerization and cyclization steps. 
    more » « less
    Free, publicly-accessible full text available April 1, 2025
  2. Dual Brønsted/Lewis acid catalysis involving environmentally benign, readily accessible protic acid and iron promotes site-selective tert -butylation of electron-rich arenes using di- tert -butylperoxide. This transformation inspired the development of a synergistic Brønsted/Lewis acid catalyzed aromatic alkylation that fills a gap in the Friedel–Crafts reaction literature by employing unactivated tertiary alcohols as alkylating agents, leading to new quaternary carbon centers. Corroborated by DFT calculations, the Lewis acid serves a role in enhancing the acidity of the Brønsted acid. The use of non-allylic, non-benzylic, and non-propargylic tertiary alcohols represents an underexplored area in Friedel–Crafts reactivity. 
    more » « less
  3. null (Ed.)
    Palladium(II)-catalyzed C–H oxidation reactions could streamline the synthesis of pharmaceuticals, agrochemicals, and other complex organic molecules. Existing methods, however, commonly exhibit poor catalyst performance with high Pd loading (e.g., 10 mol %) and a need for (super)stoichiometric quantities of undesirable oxidants, such as benzoquinone and silver(I) salts. The present study probes the mechanism of a representative Pd-catalyzed oxidative C–H arylation reaction and elucidates mechanistic features that undermine catalyst performance, including substrate-consuming side reactions and sequestration of the catalyst as inactive species. Systematic tuning of the quinone co-catalyst overcomes these deleterious features. Use of 2,5-di- tert -butyl- p -benzoquinone enables efficient use of molecular oxygen as the oxidant, high reaction yields, and >1900 turnovers by the palladium catalyst. 
    more » « less
  4. Abstract

    Direct and regioselective functionalization of pyridine is a topic of high scientific and technological importance. In spite of extensive efforts, the regioselective functionalization of pyridine still remains a significant challenge due to their low reactivity and presence of Lewis‐basic sp2nitrogen. Here, we studied the effect of hydrogen bonding interactions on the regiochemical outcome of Pd‐mediated C−H activation of pyridine by utilizing DFT calculations. We demonstrated that hydrogen bonding can act as a second independent factor to override the inherent regioselectivity of pyridine. This novel approach complements previously reported strategies, such as: (a) coordination of pyridine to transition metal center via its N‐center, (b) installation of directing group (DG) and then coordination of pyridine to the transition metal center via this DG (i. e. chelation assistant strategy), (c) protection of its nitrogen lone pair with N‐oxide or N‐imino groups or with Lewis acids, (d) the inherent positional reactivity of C−H bonds based on the electronic or steric properties of the substituents, and (e) by the identity of the oxidant used. We have also demonstrated that the oxidation state of the Pd catalyst has impact on the regiochemical outcome of the C−H activation step in pyridine. The implications of our study for regioselective C−H functionalization catalyst design of heteroarenes are twofold: It demonstrates (1) hydrogen bonding as a viable design principle, and (2) Pd(IV) as a catalyst for C−H functionalization.

     
    more » « less