skip to main content


Search for: All records

Creators/Authors contains: "Hallett, Lauren M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Ecological stability in plant communities is shaped by bottom-up processes like environmental resource fluctuations and top-down controls such as herbivory, each of which have demonstrated direct effects but may also act indirectly by altering plant community dynamics. These indirect effects, called biotic stability mechanisms, have been studied across environmental gradients, but few studies have assessed the importance of top-down controls on biotic stability mechanisms in conjunction with bottom-up processes. Here we use a long-term herbivore exclusion experiment in central Kenya to explore the joint effects of drought and herbivory (bottom-up and top-down limitation, respectively) on three biotic stability mechanisms: (1) species asynchrony, in which a decline in one species is compensated for by a rise in another, (2) stable dominant species driving overall stability, and (3) the portfolio effect, in which a community property is distributed among multiple species. We calculated the temporal stability of herbaceous cover and biotic stability mechanisms over a 22-year time series and with a moving window to examine changes through time. Both drought and herbivory additively reduced asynchronous dynamics, leading to lower stability during droughts and under high herbivore pressure. This effect is likely attributed to a reduction in palatable dominant species under higher herbivory, which creates space for subordinate species to fluctuate synchronously in response to rainfall variability. Dominant species population stability promoted community stability, an effect that did not vary with precipitation but depended on herbivory. The portfolio effect was not important for stability in this system. Our results demonstrate that this system is naturally dynamic, and a future of increasing drought may reduce its stability. However, these effects will in turn be amplified or buffered depending on changes in herbivore communities and their direct and indirect impacts on plant community dynamics. 
    more » « less
  2. Adler, Frederick (Ed.)
  3. Battipaglia, Giovanna (Ed.)
  4. null (Ed.)
  5. Ecological restoration often relies on disturbance as a tool for establishing target plant communities, but disturbance can be a double‐edged sword, at times initiating invasion and unintended outcomes. Here we test how fire disturbance, designed to enhance restoration seeding success, combines with climate and initial vegetation conditions to shift perennial versus annual grass dominance and overall community diversity in Pacific Northwest grasslands. We seeded both native and introduced perennial grasses and native forbs in paired, replicated burned‐unburned plots in three sites along a latitudinal climate gradient from southern Oregon to central‐western Washington. Past restoration and climate manipulations at each site had increased the variation of starting conditions between plots. Burning promoted the expansion of extant forbs and perennial grasses across all sites. Burning also enhanced the seeding success of native perennial grass and native forbs at the northern and central site, and the success of introduced perennial grasses across all three sites. Annual grass dominance was driven more by latitude than burning, with annuals maintaining their dominance in the south and perennials in the north. At the same time, unrestored grasslands surrounding all sites remained dominated by perennial grasses, suggesting that initial plot clearing may have allowed for annual grass invasion in the southern site. When paired with disturbance, further warming may increase the risk of annual grass dominance, a potentially persistent state.

     
    more » « less
  6. Haddad, Nick (Ed.)
  7. Abstract Aim

    Understanding the factors that shape biodiversity over space and time is a central question in ecology. Spatiotemporal environmental variation in resource availability can favor different species, generating beta diversity patterns that increase overall diversity. A key question is the degree to which biotic processes—in particular herbivory—enhance or dampen the effect of environmental variation on resource availability at different scales.

    Location

    We tested this question in a semi‐arid California grassland, which is characterized by high rainfall variability. The system supports giant kangaroo rats (Dipodomys ingens), which form mounds that structure spatial variability in soil nutrient availability.

    Methods

    From 2008 to 2017 we implemented a cattle herbivory exclusion experiment to test whether herbivory moderates the effect of spatial and inter‐annual resource variability on plant biomass and diversity both on and off mounds.

    Results

    Grazing reduced local diversity regardless of mound status or amount of precipitation. However, we found that plant productivity was higher on than off mounds, increased following high rainfall years, and that grazing increased these on‐ versus off‐mound differences in wet years—especially after a major drought. Correspondingly, grazing led to on‐mound communities that were more different from each other and from off‐mound communities.

    Conclusions

    Taken together, our results suggest that herbivory generally enhances habitat heterogeneity across this arid landscape, but is resource context‐dependent with greater effects seen in wetter years.

     
    more » « less