skip to main content


Search for: All records

Creators/Authors contains: "Hallinan, Gregg"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    FRB 121102 is the first fast radio burst to be spatially associated with a persistent radio source (QRS 121102), the nature of which remains unknown. We constrain the physical size of QRS 121102 by measuring its flux-density variability with the VLA from 12 to 26 GHz. Any such variability would likely be due to Galactic refractive scintillation and would require the source radius to be ≲1017cm at the host-galaxy redshift. We found the radio variability to be lower than the scintillation theory predictions for such a small source, leaving open the possibility for non-AGN models for QRS 121102. In addition, we roughly estimated the mass of any potential supermassive black hole (BH) associated with QRS 121102 from the line width of the host-galaxy Hαemission using a new optical spectrum from the Keck Observatory. The line width indicates a supermassive BH mass of ≲104∼5M, too low for the observed radio luminosity and X-ray luminosity constraints, if QRS 121102 were an AGN. Finally, some dwarf galaxies that host supermassive BHs may be the stripped cores of massive galaxies during tidal interactions with companion systems. We find no nearby galaxy at the same redshift as the QRS 121102 host from low-resolution Keck spectra or the PanSTARRS catalog. In conclusion, we find no evidence supporting the hypothesis that QRS 121102 is an AGN. We instead argue that the inferred size and flat radio spectrum favor a plerion interpretation. We urge continued broadband radio monitoring of QRS 121102 to search for long-term evolution.

     
    more » « less
  2. Abstract

    We report on a full-polarization analysis of the first 25 as yet nonrepeating fast radio bursts (FRBs) detected at 1.4 GHz by the 110-antenna Deep Synoptic Array (DSA-110) during commissioning observations. We present details of the data-reduction, calibration, and analysis procedures developed for this novel instrument. Faraday rotation measures (RMs) are searched between ±106rad m−2and detected for 20 FRBs, with magnitudes ranging from 4 to 4670 rad m−2. Fifteen out of 25 FRBs are consistent with 100% polarization, 10 of which have high (≥70%) linear-polarization fractions and two of which have high (≥30%) circular-polarization fractions. Our results disfavor multipath RM scattering as a dominant depolarization mechanism. Polarization-state and possible RM variations are observed in the four FRBs with multiple subcomponents. We combine the DSA-110 sample with polarimetry of previously published FRBs, and compare the polarization properties of FRB subpopulations and FRBs with Galactic pulsars. Although FRB polarization fractions are typically higher than those of Galactic pulsars, and cover a wider range than those of pulsar single pulses, they resemble those of the youngest (characteristic ages <105yr) pulsars. Our results support a scenario wherein FRB emission is intrinsically highly linearly polarized, and propagation effects can result in conversion to circular polarization and depolarization. Young pulsar emission and magnetospheric propagation geometries may form a useful analogy for the origin of FRB polarization.

     
    more » « less
  3. Abstract

    We report the discovery and follow-up observations of VT 1137–0337, an unusual radio transient found in our systematic search for extragalactic explosions in the Very Large Array Sky Survey. It is located in the brightest region of a dwarf starburst galaxy at a luminosity distance of 121.6 Mpc. Its 3 GHz luminosity is comparable to luminous radio supernovae associated with dense circumstellar interaction and relativistic outflows. However, its broadband radio spectrum—proportional toν−0.35over a range of ≳10× in frequency and fading at a rate of 5% yr–1—cannot be directly explained by the shock of a stellar explosion. Jets launched by various classes of accreting black holes also struggle to account for VT 1137–0337's combination of observational properties. Instead, we propose that VT 1137–0337 is a decades-old pulsar wind nebula that has recently emerged from within the free–free opacity of its surrounding supernova ejecta. If the nebula is powered by spin-down, the central neutron star should have a surface dipole field of ∼1013–1014G and a present-day spin period of ∼10–100 ms. Alternatively, the nebula may be powered by the release of magnetic energy from a magnetar. Magnetar nebulae have been proposed to explain the persistent radio sources associated with the repeating fast radio bursts FRB 121102 and FRB 190520B. These FRB persistent sources have not previously been observed as transients but do bear a striking resemblance to VT 1137–0337 in their radio luminosity, spectral index, and host galaxy properties.

     
    more » « less
  4. ABSTRACT

    Galaxy clusters accrete mass through large-scale, strong, structure-formation shocks. Such a virial shock is thought to deposit fractions ξe and ξB of the thermal energy in cosmic-ray electrons (CREs) and magnetic fields, respectively, thus generating a leptonic virial ring. However, the expected synchrotron signal was not convincingly established until now. We stack low-frequency radio data from the OVRO-LWA around the 44 most massive, high latitude, extended MCXC clusters, enhancing the ring sensitivity by rescaling clusters to their characteristic, R500 radii. Both high (73 MHz) and co-added low (36–68 MHz) frequency channels separately indicate a significant (4–5σ) excess peaked at (2.4–2.6)R500, coincident with a previously stacked Fermi γ-ray signal interpreted as inverse-Compton emission from virial-shock CREs. The stacked radio signal is well fit (TS-test: 4–6σ at high frequency, 4–8σ at low frequencies, and 8–10σ joint) by virial-shock synchrotron emission from the more massive clusters, with $\dot{m}\xi _e\xi _B\simeq (1\!-\!4)\times 10^{-4}$, where $\dot{m}\equiv \dot{M}/(MH)$ is the dimensionless accretion rate for a cluster of mass M and a Hubble constant H. The inferred CRE spectral index is flat, p ≃ 2.0 ± 0.2, consistent with acceleration in a strong shock. Assuming equipartition or using $\dot{m}\xi _e\sim 0.6~{{\ \rm per\ cent}}$ inferred from the Fermi signal yields $\xi _B\simeq (2\!-\!9)~{{\ \rm per\ cent}}$, corresponding to B ≃ (0.1–0.3) $\mu$G magnetic fields downstream of typical virial shocks. Preliminary evidence suggests non-spherical shocks, with factor 2–3 elongations.

     
    more » « less
  5. Free, publicly-accessible full text available August 19, 2024
  6. Abstract

    Faraday rotation measures (RMs) of fast radio bursts (FRBs) offer the prospect of directly measuring extragalactic magnetic fields. We present an analysis of the RMs of 10 as yet nonrepeating FRBs detected and localized to host galaxies with robust redshift measurements by the 63-antenna prototype of the Deep Synoptic Array (DSA-110). We combine this sample with published RMs of 15 localized FRBs, nine of which are repeating sources. For each FRB in the combined sample, we estimate the host-galaxy dispersion measure (DM) contributions and extragalactic RM. We find compelling evidence that the extragalactic components of FRB RMs are often dominated by contributions from the host-galaxy interstellar medium (ISM). Specifically, we find that both repeating and as yet nonrepeating FRBs show a correlation between the host DM and host RM in the rest frame, and we find an anticorrelation between extragalactic RM (in the observer frame) and redshift for nonrepeaters, as expected if the magnetized plasma is in the host galaxy. Important exceptions to the ISM origin include a dense, magnetized circumburst medium in some repeating FRBs, and the intracluster medium of host or intervening galaxy clusters. We find that the estimated ISM magnetic-field strengths,B¯, are characteristically ∼1–2μG larger than those inferred from Galactic radio pulsars. This suggests either increased ISM magnetization in FRB hosts in comparison with the Milky Way, or that FRBs preferentially reside in regions of increased magnetic-field strength within their hosts.

     
    more » « less
  7. Abstract The stellar population environments that are associated with fast radio burst (FRB) sources provide important insights for developing their progenitor theories. We expand the diversity of known FRB host environments by reporting two FRBs in massive galaxy clusters that were discovered by the Deep Synoptic Array (DSA-110) during its commissioning observations. FRB 20220914A has been localized to a star-forming, late-type galaxy at a redshift of 0.1139 with multiple starbursts at lookback times less than ∼3.5 Gyr in the A2310 galaxy cluster. Although the host galaxy of FRB 20220914A is similar to typical FRB hosts, the FRB 20220509G host stands out as a quiescent, early-type galaxy at a redshift of 0.0894 in the A2311 galaxy cluster. The discovery of FRBs in both late- and early-type galaxies adds to the body of evidence that the FRB sources have multiple formation channels. Therefore, even though FRB hosts are typically star-forming, there must exist formation channels that are consistent with old stellar population in galaxies. The varied star formation histories of the two FRB hosts that we report here indicate a wide delay-time distribution of FRB progenitors. Future work in constraining the FRB delay-time distribution, using the methods that we develop herein, will prove crucial in determining the evolutionary histories of FRB sources. 
    more » « less
    Free, publicly-accessible full text available June 1, 2024
  8. Abstract The hot gas that constitutes the intracluster medium (ICM) has been studied at X-ray and millimeter/submillimeter wavelengths (Sunyaev–Zel’dovich effect) for decades. Fast radio bursts (FRBs) offer an additional method of directly measuring the ICM and gas surrounding clusters via observables such as dispersion measure (DM) and Faraday rotation measure. We report the discovery of two FRB sources detected with the Deep Synoptic Array whose host galaxies belong to massive galaxy clusters. In both cases, the FRBs exhibit excess extragalactic DM, some of which likely originate in the ICM of their respective clusters. FRB 20220914A resides in the galaxy cluster A2310 at z = 0.1125 with a projected offset from the cluster center of 520 ± 50 kpc. The host of a second source, FRB 20220509G, is an elliptical galaxy at z = 0.0894 that belongs to the galaxy cluster A2311 at the projected offset of 870 ± 50 kpc. These sources represent the first time an FRB has been localized to a galaxy cluster. We combine our FRB data with archival X-ray, Sunyaev–Zel'dovich (SZ), and optical observations of these clusters in order to infer properties of the ICM, including a measurement of gas temperature from DM and y SZ of 0.8–3.9 keV. We then compare our results to massive cluster halos from the IllustrisTNG simulation. Finally, we describe how large samples of localized FRBs from future surveys will constrain the ICM, particularly beyond the virial radius of clusters. 
    more » « less
    Free, publicly-accessible full text available May 31, 2024
  9. Abstract GW170817 is the first binary neutron star (NS) merger detected in gravitational waves (GWs) and photons, and so far remains the only GW event of its class with a definitive electromagnetic counterpart. Radio emission from the structured jet associated with GW170817 has faded below the sensitivity achievable via deep radio observations with the most sensitive radio arrays currently in operation. Hence, we now have the opportunity to probe the radio re-brightening that some models predict, which should emerge at late times from the interaction of the dynamically stripped merger ejecta with the interstellar medium. Here we present the latest results from our deep radio observations of the GW170817 field with the Karl G. Jansky Very Large Array (VLA), 4.5 yr after the merger. Our new data at 3 GHz do not show any compelling evidence for emission in excess to the tail of the jet afterglow (<3.3 μ Jy), confirming our previous results. We thus set new constraints on the dynamical ejecta afterglow models. These constraints favor single-speed ejecta with energies ≲10 50 erg (for an ejecta speed of β 0 = 0.5), or steeper energy–speed distributions of the kilonova ejecta. Our results also suggest larger values of the cold, nonrotating maximum NS mass in equal-mass scenarios. However, without a detection of the dynamical ejecta afterglow, obtaining precise constraints on the NS equation of state remains challenging. 
    more » « less
  10. The Owens Valley Radio Observatory Long Wavelength Array is a low radio frequency all-sky imaging radio interferometer. The full 352-element array will generate more than 2 TB of visibility data per hour of observation. One of the array’s primary science cases, the search for variable radio emission from exoplanets and for transients, require fast and high dynamic range interferometric imaging. Here we detail the design and implementation of a two-pipeline infrastructure that minimizes development cost: an offline pipeline that facilitates experimentation with existing pack-ages, and a real-time pipeline that minimizes overhead. 
    more » « less