skip to main content


Search for: All records

Creators/Authors contains: "Hansen, Amy T."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. Despite decades of policy that strives to reduce nutrient and sediment export from agricultural fields, surface water quality in intensively managed agricultural landscapes remains highly degraded. Recent analyses show that current conservation efforts are not sufficient to reverse widespread water degradation in Midwestern agricultural systems. Intensifying row crop agriculture and increasing climate pressure require a more integrated approach to water quality management that addresses diverse sources of nutrients and sediment and off-field mitigation actions. We used multiobjective optimization analysis and integrated three biophysical models to evaluate the cost-effectiveness of alternative portfolios of watershed management practices at achieving nitrate and suspended sediment reduction goals in an agricultural basin of the Upper Midwestern United States. Integrating watershed-scale models enabled the inclusion of near-channel management alongside more typical field management and thus directly the comparison of cost-effectiveness across portfolios. The optimization analysis revealed that fluvial wetlands (i.e., wide, slow-flowing, vegetated water bodies within the riverine corridor) are the single-most cost-effective management action to reduce both nitrate and sediment loads and will be essential for meeting moderate to aggressive water quality targets. Although highly cost-effective, wetland construction was costly compared to other practices, and it was not selected in portfolios at low investment levels. Wetland performance was sensitive to placement, emphasizing the importance of watershed scale planning to realize potential benefits of wetland restorations. We conclude that extensive interagency cooperation and coordination at a watershed scale is required to achieve substantial, economically viable improvements in water quality under intensive row crop agricultural production.

     
    more » « less
  3. Abstract

    Emerging theory suggests that the ecosystem‐level consequences of anthropogenic pressures depend on how species will be disassembled from ecological communities (i.e. the disassembly rule). Species loss, however, is not the sole ecological cause of ecosystem function loss: behaviours underpinning ecosystem function can also be disrupted by anthropogenic pressures without detectable declines of component species (‘cryptic function loss’).

    Here, we introduce a novel framework that integrates behavioural responses into community disassembly metrics. We applied this framework to freshwater mussel communities (order Unionida) of the midwestern United States, in which intensive agricultural land use threatens stream biota. We combined a field experiment, meta‐analysis and watershed‐scale population dataset to assess how excessive sediment concentrations, one of the leading drivers of freshwater biodiversity loss, influence community‐level water clearance rates of freshwater mussels via behavioural (changes in mass‐specific clearance rate) and population (changes in population density) responses.

    Our study provided three key insights. First, freshwater mussels exhibited high behavioural sensitivity to increased total suspended solids (TSS) across species (i.e. reduced water clearance rate), whereas population responses were highly species‐specific. Second, the behavioural response to increased TSS causes substantial cryptic function loss under stressful conditions: simulated water clearance rates when behavioural response is included can be less than half that of mussel communities with no behavioural response. Finally, simulations revealed that mussel communities are likely to show rapid but consistent rates of ecosystem function loss irrespective of disassembly rules. The similar rates of function loss are due to the uniform behavioural response to TSS that masks the linkage between population sensitivity of a species and its contribution to ecosystem function.

    Synthesis and applications. Our findings suggest that ignoring behavioural processes may cause non‐negligible underestimation of ecosystem function loss during community disassembly, potentially leading to overly optimistic assessments of ecosystem resilience. Furthermore, unlike species declines or local extinctions, behaviour response tied to function loss may occur concurrently with increasing anthropogenic pressures. Therefore, managers should acknowledge the risk of immediate function loss after human‐induced environmental changes.

     
    more » « less
  4. Abstract

    Understanding controls of P movement through watersheds are essential for improved landscape management in intensively managed regions. Here, we analyze observational data from 104 gaged river sites and 176 nongaged river sites within agriculturally dominated watersheds of Minnesota, USA, to understand the role of landscape features, land use practices, climate variability, and biogeochemical processes in total, dissolved and particulate P dynamics at daily to annual scales. Our analyses demonstrate that factors mediating P concentration‐discharge relationships varied greatly across watersheds and included near‐channel sediment sources, lake and wetland interception, assimilation by algal P, and artificial land drainage. The majority of gaged sites exhibited mobilizing behavior for all forms of P at event (i.e., daily) timescales and chemostatic behavior at annual timescales. The large majority of watershed P export (>70%, on average) occurred during high flow conditions, suggesting that more frequent large storm events arising from climate change will drive increased P losses from agricultural watersheds without substantial management changes. We found that P export could be dominated by dissolved P, particulate P, or an even mix of the two forms, depending on watershed attributes. Implementation of management practices to control P losses must be guided by understanding of how local landscapes interact with current and future climate conditions. Managing for both dissolved and particulate P is required to reduce overall P load in many agricultural watersheds.

     
    more » « less