skip to main content


Search for: All records

Creators/Authors contains: "Harn, Yeu���Wei"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. null (Ed.)
  3. Perovskite oxides (ABO3) have been widely recognized as a class of promising noble-metal–free electrocatalysts due to their unique compositional flexibility and structural stability. Surprisingly, investigation into their size-dependent electrocatalytic properties, in particular barium titanate (BaTiO3), has been comparatively few and limited in scope. Herein, we report the scrutiny of size- and dopant-dependent oxygen reduction reaction (ORR) activities of an array of judiciously designed pristine BaTiO3and doped BaTiO3(i.e., La- and Co-doped) nanoparticles (NPs). Specifically, a robust nanoreactor strategy, based on amphiphilic star-like diblock copolymers, is employed to synthesize a set of hydrophobic polymer-ligated uniform BaTiO3NPs of different sizes (≤20 nm) and controlled compositions. Quite intriguingly, the ORR activities are found to progressively decrease with the increasing size of BaTiO3NPs. Notably, La- and Co-doped BaTiO3NPs display markedly improved ORR performance over the pristine counterpart. This can be attributed to the reduced limiting barrier imposed by the formation of -OOH species during ORR due to enhanced adsorption energy of intermediates and the possibly increased conductivity as a result of change in the electronic states as revealed by our density functional theory–based first-principles calculations. Going beyond BaTiO3NPs, a variety of other ABO3NPs with tunable sizes and compositions may be readily accessible by exploiting our amphiphilic star-like diblock copolymer nanoreactor strategy. They could in turn provide a unique platform for both fundamental and practical studies on a suite of physical properties (dielectric, piezoelectric, electrostrictive, catalytic, etc.) contingent upon their dimensions and compositions.

     
    more » « less
  4. null (Ed.)
  5. Placing plasmonic nanoparticles (NPs) in close proximity to semiconductor nanostructures renders effective tuning of the optoelectronic properties of semiconductors through the localized surface plasmon resonance (LSPR)-induced enhancement of light absorption and/or promotion of carrier transport. Herein, we report on, for the first time, the scrutiny of carrier dynamics of perovskite solar cells (PSCs) via sandwiching monodisperse plasmonic/dielectric core/shell NPs with systematically varied dielectric shell thickness yet fixed plasmonic core diameter within an electron transport layer (ETL). Specifically, a set of Au NPs with precisely controlled dimensions ( i.e. , fixed Au core diameter and tunable SiO 2 shell thickness) and architectures (plain Au NPs and plasmonic/dielectric Au/SiO 2 core/shell NPs) are first crafted by capitalizing on the star-like block copolymer nanoreactor strategy. Subsequently, these monodisperse NPs are sandwiched between the two consecutive TiO 2 ETLs. Intriguingly, there exists a critical dielectric SiO 2 shell thickness, below which hot electrons from the Au core are readily injected to TiO 2 ( i.e. , hot electron transfer (HET)); this promotes local electron mobility in the TiO 2 ETL, leading to improved charge transport and increased short-circuit current density ( J sc ). It is also notable that the HET effect moves up the Fermi level of TiO 2 , resulting in an enhanced built-in potential and open-circuit voltage ( V oc ). Taken together, the PSCs constructed by employing a sandwich-like TiO 2 /Au NPs/TiO 2 ETL exhibit both greatly enhanced J sc and V oc , delivering champion PCEs of 18.81% and 19.42% in planar and mesostructured PSCs, respectively. As such, the judicious positioning of rationally designed monodisperse plasmonic NPs in the ETL affords effective tailoring of carrier dynamics, thereby providing a unique platform for developing high-performance PSCs. 
    more » « less
  6. The current trend in the miniaturization of electronic devices has driven the investigation into many nanostructured materials. The ferroelectric material barium titanate (BaTiO 3 ) has garnered considerable attention over the past decade owing to its excellent dielectric and ferroelectric properties. This has led to significant progress in synthetic techniques that yield high quality BaTiO 3 nanocrystals (NCs) with well-defined morphologies ( e.g. , nanoparticles, nanorods, nanocubes and nanowires) and controlled crystal phases ( e.g. , cubic, tetragonal and multi-phase). The ability to produce nanoscale BaTiO 3 with controlled properties enables theoretical and experimental studies on the intriguing yet complex dielectric properties of individual BaTiO 3 NCs as well as BaTiO 3 /polymer nanocomposites. Compared with polymer-free individual BaTiO 3 NCs, BaTiO 3 /polymer nanocomposites possess several advantages. The polymeric component enables simple solution processibility, high breakdown strength and light weight for device scalability. The BaTiO 3 component enables a high dielectric constant. In this review, we highlight recent advances in the synthesis of high-quality BaTiO 3 NCs via a variety of chemical approaches including organometallic, solvothermal/hydrothermal, templating, molten salt, and sol–gel methods. We also summarize the dielectric and ferroelectric properties of individual BaTiO 3 NCs and devices based on BaTiO 3 NCs via theoretical modeling and experimental piezoresponse force microscopy (PFM) studies. In addition, viable synthetic strategies for novel BaTiO 3 /polymer nanocomposites and their structure–composition–performance relationship are discussed. Lastly, a perspective on the future direction of nanostructured BaTiO 3 -based materials is presented. 
    more » « less
  7. The past few years have witnessed rapid advances in the synthesis of high-quality perovskite nanocrystals (PNCs). However, despite the impressive developments, the stability of PNCs remains a substantial challenge. The ability to reliably improve stability of PNCs while retaining their individual nanometer size represents a critical step that underpins future advances in optoelectronic applications. Here, we report an unconventional strategy for crafting dual-shelled PNCs (i.e., polymer-ligated perovskite/SiO 2 core/shell NCs) with exquisite control over dimensions, surface chemistry, and stabilities. In stark contrast to conventional methods, our strategy relies on capitalizing on judiciously designed star-like copolymers as nanoreactors to render the growth of core/shell NCs with controlled yet tunable perovskite core diameter, SiO 2 shell thickness, and surface chemistry. Consequently, the resulting polymer-tethered perovskite/SiO 2 core/shell NCs display concurrently a stellar set of substantially improved stabilities (i.e., colloidal stability, chemical composition stability, photostability, water stability), while having appealing solution processability, which are unattainable by conventional methods. 
    more » « less
  8. Abstract

    Approaches to achieve stable perovskite nanocrystals (PNCs) of interest, in particular those with large structural anisotropy, through protective coating of the inorganic shell at a single‐nanocrystal (NC) level are comparatively few and limited in scope. Reported here is a robust amphiphilic‐diblock‐copolymer‐enabled strategy for crafting highly‐stableanisotropicCsPbBr3nanosheets (NSs) by in situ formation of a uniform inorganic shell (1st shielding) that is intimately ligated with hydrophobic polymers (2nd shielding). The dual‐protected NSs display an array of remarkable stabilities (i.e., thermal, photostability, moisture, polar solvent, aliphatic amine, etc.) and find application in white‐light‐emitting diodes. In principle, by anchoring other multidentate amphiphilic polymer ligands on the surface of PNCs, followed by templated‐growth of shell materials of interest, a rich variety of dual‐shelled, multifunctional PNCs with markedly improved stabilities can be created for use in optics, optoelectronics, and sensory devices.

     
    more » « less
  9. Abstract

    Approaches to achieve stable perovskite nanocrystals (PNCs) of interest, in particular those with large structural anisotropy, through protective coating of the inorganic shell at a single‐nanocrystal (NC) level are comparatively few and limited in scope. Reported here is a robust amphiphilic‐diblock‐copolymer‐enabled strategy for crafting highly‐stableanisotropicCsPbBr3nanosheets (NSs) by in situ formation of a uniform inorganic shell (1st shielding) that is intimately ligated with hydrophobic polymers (2nd shielding). The dual‐protected NSs display an array of remarkable stabilities (i.e., thermal, photostability, moisture, polar solvent, aliphatic amine, etc.) and find application in white‐light‐emitting diodes. In principle, by anchoring other multidentate amphiphilic polymer ligands on the surface of PNCs, followed by templated‐growth of shell materials of interest, a rich variety of dual‐shelled, multifunctional PNCs with markedly improved stabilities can be created for use in optics, optoelectronics, and sensory devices.

     
    more » « less