skip to main content


Search for: All records

Creators/Authors contains: "Hassan, Mohammed"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Background and context. “Explain in Plain English” (EiPE) questions ask students to explain the high-level purpose of code, requiring them to understand the macrostructure of the program’s intent. A lot is known about techniques that experts use to comprehend code, but less is known about how we should teach novices to develop this capability. Objective. Identify techniques that can be taught to students to assist them in developing their ability to comprehend code and contribute to the body of knowledge of how novices develop their code comprehension skills. Method. We developed interventions that could be taught to novices motivated by previous research about how experts comprehend code: prompting students to identify beacons, identify the role of variables, tracing, and abstract tracing. We conducted think-aloud interviews of introductory programming students solving EiPE questions, varying which interventions each student was taught. Some participants were interviewed multiple times throughout the semester to observe any changes in behavior over time. Findings. Identifying beacons and the name of variable roles were rarely helpful, as they did not encourage students to integrate their understanding of that piece in relation to other lines of code. However, prompting students to explain each variable’s purpose helped them focus on useful subsets of the code, which helped manage cognitive load. Tracing was helpful when students incorrectly recognized common programming patterns or made mistakes comprehending syntax (text-surface). Prompting students to pick inputs that potentially contradicted their current understanding of the code was found to be a simple approach to them effectively selecting inputs to trace. Abstract tracing helped students see high-level, functional relationships between variables. In addition, we observed student spontaneously sketching algorithmic visualizations that similarly helped them see relationships between variables. Implications. Because students can get stuck at many points in the process of code comprehension, there seems to be no silver bullet technique that helps in every circumstance. Instead, effective instruction for code comprehension will likely involve teaching a collection of techniques. In addition to these techniques, meta-knowledge about when to apply each technique will need to be learned, but that is left for future research. At present, we recommend teaching a bottom-up, concrete-to-abstract approach. 
    more » « less
    Free, publicly-accessible full text available August 7, 2024
  2. Explain in Plain English (EiPE) questions evaluate whether students can understand and explain the high-level purpose of code. We conducted a qualitative think-aloud study of introductory programming students solving EiPE questions. In this paper, we focus on how students use tracing (mental execution) to understand code in order to explain it. We found that, in some cases, tracing can be an effective strategy for novices to understand and explain code. Furthermore, we observed three problems that prevented tracing from being helpful, which are 1) not employing tracing when it could be helpful (some struggling students explained correctly after the interviewer suggested tracing the code), 2) tracing incorrectly due to misunderstandings of the programming language, and 3) tracing with a set of inputs that did not sufficiently expose the code’s behavior (upon interviewer suggesting inputs, students explained correctly). These results suggest that we should teach students to use tracing as a method for understanding code and teach them how to select appropriate inputs to trace. 
    more » « less
  3. Dorn, Brian ; Vahrenhold, Jan (Ed.)
    Background and Context Lopez and Lister first presented evidence for a skill hierarchy of code reading, tracing, and writing for introductory programming students. Further support for this hierarchy could help computer science educators sequence course content to best build student programming skill. Objective This study aims to replicate a slightly simplified hierarchy of skills in CS1 using a larger body of students (600+ vs. 38) in a non-major introductory Python course with computer-based exams. We also explore the validity of other possible hierarchies. Method We collected student score data on 4 kinds of exam questions. Structural equation modeling was used to derive the hierarchy for each exam. Findings We find multiple best-fitting structural models. The original hierarchy does not appear among the “best” candidates, but similar models do. We also determined that our methods provide us with correlations between skills and do not answer a more fundamental question: what is the ideal teaching order for these skills? Implications This modeling work is valuable for understanding the possible correlations between fundamental code-related skills. However, analyzing student performance on these skills at a moment in time is not sufficient to determine teaching order. We present possible study designs for exploring this more actionable research question. 
    more » « less
  4. ABSTRACT

    The thermomechanical behavior of polymer nanocomposites is mostly governed by interfacial properties which rely on particle–polymer interactions, particle loading, and dispersion state. We recently showed that poly(methyl methacrylate) (PMMA) adsorbed nanoparticles in poly(ethylene oxide) (PEO) matrices displayed an unusual thermal stiffening response. The molecular origin of this unique stiffening behavior resulted from the enhanced PEO mobility within glassy PMMA chains adsorbed on nanoparticles. In addition, dynamic asymmetry and chemical heterogeneities existing in the interfacial layers around particles were shown to improve the reinforcement of composites as a result of good interchain mixing. Here, the role of chain rigidity in this interfacially controlled reinforcement in PEO composites is investigated. We show that particles adsorbed with less rigid polymers improve the mechanical properties of composites. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys.2019,57, 9–14

     
    more » « less