skip to main content


Search for: All records

Creators/Authors contains: "Hastings, J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Variable-pressure electron-beam lithography (VP-EBL) employs an ambient gas at subatmospheric pressures to reduce charging during electron-beam lithography. VP-EBL has been previously shown to eliminate pattern distortion and provide improved resolution when patterning poly(methyl methacrylate) (PMMA) on insulating substrates. However, it remains unknown how water vapor affects the contrast and clearing dose nor has the effect of water vapor on the negative-tone behavior of PMMA been studied. In addition, water vapor has recently been shown to alter the radiation chemistry of the VP-EBL process for Teflon AF. Such changes in radiation chemistry have not been explored for PMMA. In this work, VP-EBL was conducted on conductive substrates to study the effect of water vapor on PMMA patterning separately from the effects of charge dissipation. In addition, both positive and negative-tone processes were studied to determine the effect of water vapor on both chain scission and cross-linking. The contrast of PMMA was found to improve significantly with increasing water vapor pressure for both positive and negative-tone patterning. The clearing dose for positive-tone patterning increases moderately with vapor pressure as would be expected for electron scattering in a gas. However, the onset set dose for negative-tone patterning increased dramatically with pressure revealing a more significant change in the exposure mechanism. X-ray photoelectron spectra and infrared transmission spectra indicate that water vapor only slightly alters the composition of exposed PMMA. Also, electron scattering in water vapor yielded a much larger clear region around negative-tone patterns. This effect could be useful for increasing the range of the developed region around cross-linked PMMA beyond the backscattered electron range. Thus, VP-EBL for PMMA introduces a new means of tuning clearing/onset dose and contrast, while allowing additional control over the size of the cleared region around negative-tone patterns.

     
    more » « less
  2. This research paper introduces a unique system called ZORQ that is a combination of a game development frame- work and a gamification framework (GDGF). The ZORQ GDGF acts as a catalyst to help motivate students by increasing student engagement and success within undergraduate Computer Science (CS) education, regardless of student experience and background. The dynamic gamification elements utilized within the GDGF make it an attractive learning method for students. After col- laborative game space customization, ZORQ gameplay sees each student tasked with designing a ship movement philosophy and then implementing their own code to autonomously control the ship in an interstellar game space filled with supplies, obstacles, and enemy ships. The particulars of engagements between ships can vary greatly by semester, along with the resources/objects present in the game, depending on the collaborative customization and the independent ship strategies implemented. A preliminary Z O R Q trial was conducted over five years in an undergraduate Data Structures and Algorithms (DSA) course. The ZORQ trial is designed to fulfill the following objectives: 1) implement DSA concepts discussed within the course, 2) identify appropriate problem-solving approaches, 3) apply one or more solutions, 4) build depth with a coding language, 5) bridge the gap between limited concept assignments and large, multi-developer software systems by allowing students to build code within a larger architecture, 6) introduce students to version control, 7) illustrate the use of prior mathematics coursework in practical applications, and 8) introduce unit testing in software systems.In exit surveys, students expressed overwhelming satisfaction with this approach. More than 84% of the students surveyed found the system useful in their educational experience and saw benefit to inspecting a completed software project. 82% of the students found that Z O R Q increased software development com- prehension. 80% enjoyed using their own personal creativity in designing a ship controller, 76% found ZORQ helped them learn how to implement and use DSAs. 71% found the system engaging and found the system interaction to be clear and understandable. Observations of student performance in later courses suggest better student maturity and comprehension in preparation for proposing and implementing their own independent projects. 
    more » « less
  3. Varifocal optics have a variety of applications in imaging systems. Metasurfaces offer control of the phase, transmission, and polarization of light using subwavelength engineered structures. However, conventional metasurface designs lack dynamic wavefront shaping which limits their application. In this work, we design and fabricate 3D doublet metalenses with a tunable focal length. The phase control of light is obtained through the mutual rotation of the singlet structures. Inspired by Moiré lenses, the proposed structure consists of two all-dielectric metasurfaces. The singlets have reverse-phase profiles resulting in the cancellation of the phase shift in the nominal position. In this design, we show that the mutual rotation of the elements produces different wavefronts with quadratic radial dependence. Thus, an input plane wave is converted to spherical wavefronts whose focal length depends on the rotation. We use a combination of a nanopillar and a phase plate as the unit cell structure working at a wavelength of 1500 nm. Our design holds promise for a range of applications such as zoom lenses, microscopy, and augmented reality.

     
    more » « less
  4. This work presents the design and fabrication of polymeric, structural optical filters that simultaneously focus light. These filters represent a novel, to the best of our knowledge, design at the boundary between diffractive optics and metasurfaces that may provide significant advantages for both digital and hyperspectral imaging. Filters for visible and near-infrared wavelengths were designed using finite-difference time-domain (FDTD) simulations. Prototype filters were fabricated using two-photon lithography, a form of nanoscale 3D printing, and have geometries suitable to replication by molding. The experimentally measured spectral transmission and focused spot size of each filter show excellent agreement with simulation.

     
    more » « less
  5. Abstract

    In the field of beam physics, two frontier topics have taken center stage due to their potential to enable new approaches to discovery in a wide swath of science. These areas are: advanced, high gradient acceleration techniques, and x-ray free electron lasers (XFELs). Further, there is intense interest in the marriage of these two fields, with the goal of producing a very compact XFEL. In this context, recent advances in high gradient radio-frequency cryogenic copper structure research have opened the door to the use of surface electric fields between 250 and 500 MV m−1. Such an approach is foreseen to enable a new generation of photoinjectors with six-dimensional beam brightness beyond the current state-of-the-art by well over an order of magnitude. This advance is an essential ingredient enabling an ultra-compact XFEL (UC-XFEL). In addition, one may accelerate these bright beams to GeV scale in less than 10 m. Such an injector, when combined with inverse free electron laser-based bunching techniques can produce multi-kA beams with unprecedented beam quality, quantified by 50 nm-rad normalized emittances. The emittance, we note, is the effective area in transverse phase space (x,px/mec) or (y,py/mec) occupied by the beam distribution, and it is relevant to achievable beam sizes as well as setting a limit on FEL wavelength. These beams, when injected into innovative, short-period (1–10 mm) undulators uniquely enable UC-XFELs having footprints consistent with university-scale laboratories. We describe the architecture and predicted performance of this novel light source, which promises photon production per pulse of a few percent of existing XFEL sources. We review implementation issues including collective beam effects, compact x-ray optics systems, and other relevant technical challenges. To illustrate the potential of such a light source to fundamentally change the current paradigm of XFELs with their limited access, we examine possible applications in biology, chemistry, materials, atomic physics, industry, and medicine—including the imaging of virus particles—which may profit from this new model of performing XFEL science.

     
    more » « less