skip to main content


Search for: All records

Creators/Authors contains: "He, X."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 1, 2024
  2. Pore-resolved direct numerical simulations (DNS) are used to investigate the interactions between stream-water flow turbulence and groundwater flow through a porous sediment bed in the hyporheic zone. Two permeability Reynolds numbers (2.56 and 5.17), representative of aquatic systems and representing ratio of permeability to viscous length scales, were simulated to understand its influence on the momentum exchange at the sediment-water interface (SWI). A doubleaveraging methodology is used to compute the Reynolds stresses, form-induced stresses, and pressure fluctuations. It is observed that both shear layer and turbulent shear stress penetration increases with ReK. Reynolds and form-induced bed-normal stresses increase with ReK. The peak values of the form-induced stresses for the lower (2.56) and higher (5.17) ReK happen within the top layer of the sediment bed. The sum of turbulent and form-induced pressure fluctuations, analyzed at their respective zero-displacement planes, are statistically similar and can be well approximated by a t location-scale distribution fit providing with a model that could potentially be used to impose boundary conditions at the SWI in reach scale simulations. 
    more » « less
  3. Direct numerical simulation is used to investigate effects of turbulent flow in the confined geometry of a face-centred cubic porous unit cell on the transport, clustering and deposition of fine particles at different Stokes numbers ( 𝑆𝑡=0.01,0.1,0.5,1,2 ) and at a pore Reynolds number of 500. Particles are advanced using one-way coupling and the collision of particles with pore walls is modelled as perfectly elastic with specular reflection. Tools for studying inertial particle dynamics and clustering developed for homogeneous flows are adapted to take into account the embedded, curved geometry of the pore walls. The pattern and dynamics of clustering are investigated using the volume change of Voronoi tesselation in time to analyse the divergence and convergence of the particles. Similar to the case of homogeneous, isotropic turbulence, the cluster formation is present at large volumes, while cluster destruction is prominent at small volumes and these effects are amplified with the Stokes number. However, unlike homogeneous, isotropic turbulence, the formation of a large number of very small volumes was observed at all Stokes numbers and attributed to the collision of particles with the pore wall. Multiscale wavelet analysis of the particle number density indicates that the peak of the energy density spectrum, representative of enhanced particle clustering, shifts towards larger scales with an increase in the Stokes number. Scale-dependent skewness and flatness quantify the intermittent void and cluster distribution, with cluster formation observed at small scales for all Stokes numbers, and void regions at large scales for large Stokes numbers. 
    more » « less