skip to main content


Search for: All records

Creators/Authors contains: "He, Xing"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    To assess the potential optoelectronic applications of metal‐halide perovskites, it is critical to have a detailed understanding of the nature and dynamics of interactions between carriers and the polar lattices. Here, the electronic and structural dynamics of bismuth‐based perovskite Cs3Bi2I9are revealed by transient reflectivity and ultrafast electron diffraction. A cross‐examination of these results combined with theoretical analyses allows the identification of the major carrier–phonon coupling mechanism and the associated time scales. It is found that carriers photoinjected into Cs3Bi2I9form self‐trapped excitons on an ultrafast time scale. However, they retain most of their energy, and their coupling to Fröhlich‐type optical phonons is limited at early times. Instead, the long‐lived excitons exert an electronic stress via deformation potential and develop a prominent, sustaining strain field as coherent acoustic phonons in 10 ps. From sub‐ps to ns and beyond, a similar extent of the atomic displacements is found throughout the different stages of structural distortions, from limited local modulations to a coherent strain field to the Debye–Waller random atomic motions on longer times. The current results suggest the potential use of bismuth‐based perovskites for applications other than photovoltaics to take advantage of the carriers’ stronger self‐trapping and long lifetimes.

     
    more » « less
  2. null (Ed.)
    Energy transport dynamics in different nanostructures are crucial to both fundamental understanding and practical applications for heat management at the nanoscale. It has been reported that thermal conductivity may be severely impacted by stacking disorder in layered materials. Here, using ultrafast electron diffraction in the reflection geometry for direct probing of structural dynamics, we report a fundamental behavioral difference due to stacking order in an entirely different system—solid-supported methanol assemblies whose layered structures may resemble those of two-dimensional (2D) and van der Waals (vdW) solids but with much weaker in-plane hydrogen bonds. Thermal diffusion is found to be the transport mechanism across 2D-layered films without a cross-plane stacking order. In stark contrast, much faster ballistic energy transport is observed in 3D-ordered crystalline solids. The major change in such dynamical behavior may be associated with the efficiency of vibrational coupling between vdW-interacted methanol layers, which demonstrates a strong structure‒property relation. 
    more » « less