skip to main content


Search for: All records

Creators/Authors contains: "He, Xun"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available April 1, 2024
  2. null (Ed.)
  3. A polypeptide-based hydrogel system, when prepared from a diblock polymer with a ternary copolypeptide as one block, exhibited thermo-, mechano- and enzyme-responsive properties, which enabled the encapsulation of naproxen (Npx) during the sol–gel transition and its release in the gel state. Statistical terpolymerizations of l -alanine (Ala), glycine (Gly) and l -isoleucine (Ile) NCAs at a 1 : 1 : 1 feed ratio initiated by monomethoxy monoamino-terminated poly(ethylene glycol) afforded a series of methoxy poly(ethylene glycol)- block -poly( l -alanine- co -glycine- co - l -isoleucine) (mPEG- b -P(A-G-I)) block polymers. β-Sheets were the dominant secondary structures within the polypeptide segments, which facilitated a heat-induced sol-to-gel transition, resulting from the supramolecular assembly of β-sheets into nanofibrils. Deconstruction of the three-dimensional networks by mechanical force (sonication) triggered the reverse gel-to-sol transition. Certain enzymes could accelerate the breakdown of the hydrogel, as determined by in vitro gel weight loss profiles. The hydrogels were able to encapsulate and release Npx over 6 days, demonstrating the potential application of these polypeptide hydrogels as an injectable local delivery system for small molecule drugs. 
    more » « less
  4. A strategy for reversible patterning of soft conductive materials is described, based upon a combination of peptide-based block copolymer hydrogelators and photo-thermally-active carbon nanotubes. This composite displays photo-responsive gelation at application-relevant timescales (<10 s), allowing for rapid and spatially-defined construction of conductive patterns (>100 S m −1 ), which, additionally, hold the capability to revert to sol upon sonication for reprocessing. 
    more » « less